@article{article_546348, title={Topological properties of face-centred cubic lattice}, journal={Hacettepe Journal of Mathematics and Statistics}, volume={49}, pages={195–207}, year={2020}, DOI={10.15672/hujms.546348}, author={Siddiqui, Muhammad Kamran and Imran, Muhammad and Saeed, Muhammad}, keywords={Randic index,atomic bond connectivity index,Zagreb types indices,Sanskruti index,face-centred cubic lattice FCC(n)}, abstract={<div style="color:rgb(0,0,0);font-size:12.6px;font-style:normal;font-variant:normal;font-weight:400;letter-spacing:normal;text-align:left;text-decoration:none;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;"> <span style="font-size:12.6px;"> <span style="font-size:12px;">Face-centred </span> <span style="font-size:12px;"> cubic lattice $FCC(n)$ has attracted large attention in recent years owing  </span> </span> <span style="font-size:12px;">to its distinguished properties and non-toxic nature, low-cost, abundance, and simple fabrication process. The graphs of </span> <span style="font-size:12px;">face-centred </span> <span style="font-size:12px;"> cubic lattice contain cube points and face  </span> <span style="font-size:12px;">centres </span> <span style="font-size:12px;">. A topological index of a chemical graph $G$ is a numeric quantity related to $G$ which describes its topological properties. In this paper, using graph theory tools, we determine the topological indices namely, Randic index, atomic bond connectivity index, Zagreb types indices, Sanskruti index for </span> <span style="font-size:12px;">face-centred </span> <span style="font-size:.9em;"> <span style="font-size:12px;"> </span> <span style="font-size:12px;">cubic l </span> <span style="font-size:12px;">attice </span> <span style="font-size:12px;"> $FCC(n)$. </span> </span> </div>}, number={1}, publisher={Hacettepe University}