@article{article_547372, title={On characterization of boundedness of superposition operators on the Maddox space C_r0 (p) of double sequences}, journal={New Trends in Mathematical Sciences}, volume={5}, pages={80–88}, year={2017}, author={Ogur, Oguz}, keywords={Superposition operators,local boundedness,boundedness}, abstract={<p> <img src="}, number={4}, publisher={Mustafa BAYRAM}