TY - JOUR T1 - Monte Carlo, Collapse Cone ve Pencil Beam Algoritmalarının Homojen ve İnhomojen Fantomda Açık Alan Ölçümleri TT - Output Measurements of Monte Carlo, Collapse Cone and Pencil Beam Algorithms in Homogeneous and Inhomogeneous Phantom AU - Durmuş, İsmail Faruk AU - Atalay, Emine Dilara PY - 2019 DA - December Y2 - 2019 DO - 10.28979/comufbed.548329 JF - Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi PB - Çanakkale Onsekiz Mart University WT - DergiPark SN - 2459-1580 SP - 251 EP - 260 VL - 5 IS - 2 LA - tr AB - Radyoterapide dozdağılımının doğru hesaplanması için küçük alan ölçümleri ve hesaplamaalgoritmalarının doğruluğu kritik öneme sahiptir. İnhomojen ortamlarda küçükalan dozimetrisindeki belirsizlikler ve zorluklar daha da artmaktadır. Buçalışmada inhomojen ve homojen fantomlarda 6MV, 6MV-FFF, 10MV ve 10MV-FFFenerjileri ile 1x1, 2x2, 3x3, 4x4, 5x5cm2 alan boyutlarında CC04 veCC01 Razor iyon odaları ile ölçümler alındı. Ölçümler ile Monaco tedaviplanlama sisteminde Monte Carlo-Dose to Medium (MC-Dm), Monte Carlo-Dose toWater (MC-Dw), Collapse Cone (CC) ve Pencil Beam (PB) algoritmaları ile yapılanhesaplamalar karşılaştırıldı. Homojen fantom su eşdeğeri RW3 katıfantomlardan, inhomojen fantom ise sueşdeğeri RW3 katı fantom ve akciğer eşdeğeri balsa fantom kullanılarakoluşturuldu. CC04 ve CC01 Razor iyon odaları ile hem homojen hem de inhomojenfantomda ölçümler değerlendirildiğinde, MC-Dm, MC-Dw, CC ve PB ile uyumlusonuçlar elde edildi. Her iki fantomda da en büyük farklar 1x1cm2alanlarda olduğu görüldü. İnhomojen fantomdaki sonuçlar homojen fantomdakisonuçlarla karşılaştırıldığında uyum oranının homojen fantomda daha iyi olduğugörüldü. CC01 Razor iyon odası 0.01cm3 hacme sahip ve merkezielektrodu grafittir. Bu özellikleri ile CC01 Razor iyon odası ile yeterincegüvenilir sonuçlar elde edilmiştir. Alan boyutu küçüldükçe ölçümler vehesaplamalar arasındaki farklar artmaktadır. KW - İnhomojenite KW - Monte Carlo KW - CC01 Razor İyon Odası N2 - Accuracy of smallfield measurements and calculation algorithms is critical for accuratecalculation of dose distribution in Radiotherapy. In inhomogeneous andhomogeneous phantoms, measurements (1x1, 2x2, 3x3, 4x4, 5x5cm2 fieldsizes) were made with CC04 and CC01 Razor ion chambers using 6MV, 6MV-FFF, 10MVand 10MV-FFF energies. In the Monaco treatment planning system, dosedistribution was calculated by Monte Carlo-Dose to Medium (MC-Dm), MonteCarlo-Dose to Water (MC-Dw), Collapse Cone (CC) and Pencil Beam (PB) algorithmsand compared with measurements. The homogeneous phantom water equivalent wasgenerated from RW3 solid phantoms, and the inhomogeneous phantom was createdusing a water-equivalent RW3 solid phantom and a lung equivalent balsa phantom.When both the homogeneous and inhomogeneous phantom measurements were evaluatedwith CC04 and CC01Razor ion chambers, results consistent with MC-Dm, MC-Dw, CCand PB were obtained. The greatest differences in both phantoms were obtainedin 1x1cm2 fields. When the results in the inhomogeneous phantom werecompared with the results in the homogeneous phantom, the compliance ratio wasobserved to be better in the homogeneous phantom. The CC01 Razor ion chamberhas a volume of 0.01cm3 and its central electrode is graphite. Withthe CC01 Razor ion chamber, reliable results were obtained. As the field sizebecomes smaller, the differences between measurements and calculations increase. CR - Almond P. R., Biggs P. J., Coursey B. M., Hanson W. F., Huq M. S., Nath R., Rogers D. W. O., 1999. AAPM’s TG-51 Protocol for Clinical Reference Dosimetry of High Energy Photon and Electron Beams. Med. Phys. 26 (9). CR - Bruinvis I. A. D., Keus R. B., Lenglet W. J. M., Meijer G. J., Mijnheer B. J., 2005. NCS Report 15: Quality Assurance of 3-D Treatment Planning Sysytems for External Photon and Electron Beams. From https://radiationdosimetry.org/ncs/documents/ncs-15-3d-tps-for-external-photon-and-electron-beams CR - Chen H., Lohr F., Fritz P., Wenz F., Dobler B., Lorenz F., Muhlnickel W., 2010. Stereotactic, Single-Dose Irradiation Of Lung Tumors: A Comparison Of Absolute Dose And Dose Distribution Between Pencil Beam And Monte Carlo Algorithms Based On Actual Patient CT Scans. International Journal Of Radiation Oncology Biology Physics. 78 (3): 955-963. CR - Chetty I. J., Devpura S., Liu D., Chen D., Li H., Wen N. W., Kumar S., Fraser C., Siddiqui M. S., Ajlouni M., Movsas B., 2013. Correlationofdose Computed Using Different Algorithms With Local Control Following Stereotactic Ablative Radiotherapy (SABR)-Based Treatment Of Non-Small-Cell Lung Cancer. Radiother Oncol. 109:498–504. CR - Das I. J., Ding G. X., Ahnesjö A., 2008. Small Fields: Nonequilibrium Radiation Dosimetry. Med. Phys. 35 (1). CR - Das I. J., Cheng C. W., Ahnesjö A., Gibbons J., Li X. A., Lowenstein J., Mitra R. K., Simon W. E., Zhu T. C., 2008. Accelerator Beam Data Commissioning Equipmwnt and Procedures: Report of the TG-106 of Therapy Physics Committee of the AAPM. Med. Phys.35 (9). CR - Dobler B., Walter C., Knopf A., Fabri D., Loeschel R., Polednik M., Schneider F., Wenz F., Lohr F., 2006. Optimization Of Extracranial Stereotactic Radiation Therapy Of Small Lung Lesions Using Accurate Dose Calculation Algorithms. Radiat Oncol. 1:45. CR - Fraass B., Doopke K., Hunt M., Kutcher G., Strakschall G., Dyke J. V., 1998. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality Assurance for Clinical Radiotherapy Treatment Planning. Med. Phys. 25 (10). CR - IAEA, 2017. Dosimetry of Small Static Fields Used in External Beam Radiotherapy. IEAE Technical reports series, Report 483.,ISSN 0074–1914; no. 483. CR - IAEA, 2004. Commissioning and Quality Assurance Computerized Planning Systems for Radiation Treatment of Cancer. IEAE Technical reports series, Report 430ISSN 0074–1914; no 430. CR - ICRU, 2017. Journal of the International Commission on Radiation Units and Measurements. Report 91.14 (2): 1–160. from https://doi.org/10.1093/jicru/ndx017 CR - Khan F. M., 2010. The Physics Of Radiation Therapy 3rd Edition. Lippincott Williams & Wilkins Company, USA. CR - Kim S. J., Kim S. K. & Kim D. H., 2015. Journal Of The Korean Physical Society. 67: 153.Https://Doi.Org/10.3938/Jkps.67.153 CR - Latifi K., Oliver J., Baker R, Dilling T. J., Stevens C. W., Kim J., Yue B., Demarco M., Zhang G., G., Fevgelman V., 2014. Study Of 201 Nonsmall Cell Lung Cancer Patients Given Stereotactic Ablative Radiation Therapy Shows Local Control Dependence On Dose Calculation Algorithm. Int. J. Radiat. Oncol. Biol. Phys. 88:1108–13. CR - Lax I., Panettieri V., Wennberg B., Duch M. A., Näslund I., Baumann P., Gagliardi G., 2006. Dose Distributions In SBRT Of Lung Tumors: Comparison Between Two Different Treatment Planning Algorithms And Monte-Carlo Simulation Including Breathing Motions. Acta Oncologica. 45(7) :978-988. CR - Lu L., 2013. Dose Calculation Algorithms İn External Beam Photon Radiation Therapy. Int J Cancer Ther Oncol. 1:01025. CR - Ma C. M., Li J. S., Deng J., Fan J., 2008. Implementation Of Monte Carlo Dose Calculation For Cyberknife Treatment Planning. Journal of Physics. 102 (1). CR - Wilcox E. E., Daskalov G. M., 2008. Accuracy of Dose Measurements and Calculations Within and Beyond Heterogeneous Tissues For 6 MV Photon Fields Smaller Than 4 cm Produced by Cyberknife. Med Phys. 35: 2259-2266. UR - https://doi.org/10.28979/comufbed.548329 L1 - https://dergipark.org.tr/en/download/article-file/889296 ER -