@article{article_554788, title={Otomatik Düşüncelere Makine Öğrenme Yöntemlerinin Uygulanması ile Aleksitimi Düzeyinin Tahmini}, journal={Psikiyatride Güncel Yaklaşımlar}, volume={11}, pages={64–78}, year={2019}, DOI={10.18863/pgy.554788}, author={Yöntem, Mustafa Kemal and Adem, Kemal}, keywords={Alexithymia,automatic thoughts,machine learning}, abstract={<p class="PreformattedText"> <span lang="en-us" xml:lang="en-us">Bu araştırmada bilişsel davranışçı terapi kavramlarından otomatik düşüncelerin aleksitimi ile ilişkisi incelenmiştir. Bu amaçla otomatik düşünceler ölçeğini oluşturan en etkili öznitelikleri tespit etmek için FisherScore analizi uygulanmıştır. Ayrıca veri kümesinin Yapay Sinir Ağı (YSA) ve Destek Vektör Makinesi (DVM) makine öğrenmesi yöntemlerine giriş olarak verilmesiyle aleksitimi düzeyi tahmin edilmiş ve bu sayede önceliğin hangi otomatik düşüncelere vermesi gerektiği konusunda bir yol haritası sunulması amaçlanmıştır. Araştırma Türkiye’nin 10 farklı ilinden 386 (%54) erkek 328 (%46) kadın olmak üzere 714 katılımcı ile gerçekleştirilmiştir. Katılımcılara kişisel bilgiler formu, Otomatik Düşünceler Ölçeği ve Toronto Aleksitimi ölçeği uygulanmıştır. Otomatik düşünceler ölçeğinden elde edilen veri kümesine Fisher Score yöntemi ile öznitelik seçim işlemi uygulanarak 5 adet öznitelik içeren veri kümesi elde edilmiştir. Bu veri kümesine DVM yönteminin uygulanması sonucunda 4.01 RMSE hatası ile aleksitimi seviyesi tahmin edilmiştir. Sonuçlar otomatik düşünceler ölçeğindeki özniteliklerin aleksitimi düzeyi ile ilişkili olduğunu göstermektedir. </span> </p> <p> </p>}, publisher={Lut TAMAM}