@article{article_554929, title={The modelling of rupture force of white kidney beans (Phaseolus vulgaris L.) using the multiple linear regression (MLP) and artificial neural networks (ANN)}, journal={Journal of Agriculture Faculty of Ege University}, volume={57}, pages={129–136}, year={2020}, DOI={10.20289/zfdergi.554929}, author={Altıkat, Sefa}, keywords={Physical property,mechanical property,simulink,moisture}, abstract={<p class="MsoNormal" style="margin-bottom:.0001pt;text-align:justify;line-height:150%;"> <b> <span style="font-size:12pt;line-height:150%;font-family:’Times New Roman’, serif;">Objective: </span> </b> <span style="font-size:12pt;line-height:150%;font-family:’Times New Roman’, serif;"> The objective of this study modelling the rupture force of white kidney beans with the multiple linear regression (MLR) and artificial neural networks (ANN). </span> </p> <p> </p> <p class="MsoNormal" style="margin-bottom:.0001pt;text-align:justify;line-height:150%;"> <b> <span style="font-size:12pt;line-height:150%;font-family:’Times New Roman’, serif;">Material and Methods: </span> </b> <span style="font-size:12pt;line-height:150%;font-family:’Times New Roman’, serif;">It was used four different white kidney bean varieties  (Akman, Topçu, Göynük and Karacaşehir) at the five different moisture contents (14.28%, 24.32%, 33.45%, 42.54% and 53.48%). In the MLR and ANN models the moisture contents,  length, width, thickness, arithmetic mean diameters, geometric mean diameters, surface area and  sphericity of the beans were used as input parameters while the rupture force as output parameter. In addition, 24 different ANN architectures were used in the ANN. </span> </p> <p> </p> <p class="MsoNormal" style="margin-bottom:.0001pt;text-align:justify;line-height:150%;"> <b> <span style="font-size:12pt;line-height:150%;font-family:’Times New Roman’, serif;">Results: </span> </b> <span style="font-size:12pt;line-height:150%;font-family:’Times New Roman’, serif;">The highest R <sup>2 </sup> values for the Akman (0.979) and Karacaşehir (0.986) varieties were obtained in the ANN11 architecture used by the Levenberg-Marquard learning function and the logarithmic sigmoid - linear transfer function pairs with 12 neurons. However, the best prediction values for Topçu (0.963) and Göynük (0.944) were obtained in ANN 7 and ANN 2 architectures, respectively. In addition, the best pair of learning functions for Topçu and Göynük were observed in Logarithmic sigmoid - Symmetric sigmoid and Logarithmic sigmoid- linear transfer functions, respectively. </span> </p> <p> </p> <p class="MsoNormal" style="margin-bottom:.0001pt;text-align:justify;line-height:150%;"> <b> <span style="font-size:12pt;line-height:150%;font-family:’Times New Roman’, serif;">Conclusion: </span> </b> <span style="font-size:12pt;line-height:150%;font-family:’Times New Roman’, serif;"> The results of the study clearly showed that the ANN successfully modeled rupture force in all the white kidney bean varieties. <b> </b> </span> </p> <p> <b> </b> </p> <b> </b>}, number={1}, publisher={Ege University}