TY - JOUR T1 - A Note on the Dunkl-Appell Orthogonal Polynomials AU - Sghaier, Mabrouk PY - 2020 DA - October Y2 - 2020 JF - Konuralp Journal of Mathematics JO - Konuralp J. Math. PB - Mehmet Zeki SARIKAYA WT - DergiPark SN - 2147-625X SP - 263 EP - 267 VL - 8 IS - 2 LA - en AB - This paper deals with the problem of finding all orthogonal polynomial sets which are also $T_{\mu}$-Appell where $T_{\mu}, \mu \in \mathbb{C}$ is the Dunkl operator. The resulting polynomials reduce to Generalized Hermite polynomials $\{{{H}}_n(\mu)\}_{n\geq0}$. KW - Orthogonal polynomials KW - Dual sequence KW - Dunkl operator CR - [1] J. Alaya and P. Maroni, Symmetric Laguerre-Hahn forms of class s = 1. Integral Transforms Spec. Funct. 4, (4), (1996), 301-320. CR - [2] W. Al-Salam, Characterization theorems for orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials: Theory and Practice, in: NATO ASI Ser. C Math. Phys. Sci., vol. 294, Kluwer Academic Publishers, Dordrecht, 1990, pp. 1-24. CR - [3] A. Angelesco, Sur les polynomes orthogonaux en rapport avec d’autre polynomes, Buletinul Societˆatii din Cluj, 1(1921), 44-59. CR - [4] Y. Ben Cheikh and M. Gaied, Characterization of the Dunkl-classical symmetric orthogonal polynomials. Appl. Math. Comput., 187 (2007), 105-114. CR - [5] Y. Ben Cheikh and M. Gaied, Dunkl-Appell d-orthogonal polynomials. Integral Transforms Spec. Funct. 18 (8), (2007) 581-597. CR - [6] L. Carlitz, Characterization of certain sequences of orthogonal polynomials, Portugaliae Math., 20 (1961), 43-46. CR - [7] T. S. Chihara, An introduction to orthogonal polynomials. Gordon and Breach, New York, 1978. CR - [8] C.F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), 1213-1227. CR - [9] A. Ghressi and L. Kheriji, A new characterization of the generalized Hermite form. Bull Belg Math Soc Simon Stevin. 15 (3) (2008), 561-567. CR - [10] L. Kheriji, P. Maroni, The Hq-classical orthogonal polynomials,Acta Appl. Math. 71 (2002), 49-115. CR - [11] P. Maroni, Une theorie algebrique des polynomes orthogonaux. Application aux polynˆomes orthogonaux semi-classiques, in: Orthogonal Polynomials and their applications. (C. Brezinski et al Editors.) IMACS, Ann. Comput. Appl. Math. 9, ( Baltzer, Basel) (1991), 95-130. CR - [12] M. Sghaier, A note on the Dunkl-classical orthogonal polynomials, Integral Transforms Spec. Funct. 23 (10), (2012) 753-760. CR - [13] J. Shohat, The relation of the classical orthogonal polmomials to the polmomials of Appell, Amer. J. Math., 58 (1936), 453-464. UR - https://dergipark.org.tr/en/pub/konuralpjournalmath/issue//556978 L1 - https://dergipark.org.tr/en/download/article-file/700352 ER -