TY - JOUR T1 - Coretractable modules relative to a submodule AU - Hamzekolaee, Ali Reza Moniri AU - Talebi, Yahya PY - 2019 DA - May DO - 10.13069/jacodesmath.561322 JF - Journal of Algebra Combinatorics Discrete Structures and Applications PB - iPeak Academy WT - DergiPark SN - 2148-838X SP - 95 EP - 103 VL - 6 IS - 2 LA - en AB - Let $R$ be a ring and $M$ a right $R$-module. Let $N$ be a proper submoduleof $M$. We say that $M$ is $N$-coretractable (or $M$ is coretractable relative to $N$)provided that, for every proper submodule $K$ of $M$ containing $N$, there isa nonzero homomorphism $f:M/K\rightarrow M$. We present some conditionsthat a module $M$ is coretractable if and only if $M$ is coretractable relative to a submodule $N$. We also provide some examples to illustrate special cases. KW - Coretractable module KW - N-coretractable module CR - [1] A. N. Abyzov, A. A. Tuganbaev, Retractable and coretractable modules, J. Math. Sci. 213(2) (2016) 132–142. CR - [2] B. Amini, M. Ershad, H. Sharif, Coretractable modules, J. Aust. Math. Soc. 86(3) (2009) 289–304. CR - [3] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer-Verlog, New York, 1992. CR - [4] N. O. Ertas, D. K. Tütüncü, R. Tribak, A variation of coretractable modules, Bull. Malays. Math. Sci. Soc. 41(3) (2018) 1275–1291. CR - [5] S. M. Khuri, Endomorphism rings and lattice isomorphisms, J. Algebra 56(2) (1979) 401–408. CR - [6] S. M. Khuri, Nonsingular retractable modules and their endomorphism rings, Bull. Aust. Math. Soc. 43(1) (1991) 63–71. CR - [7] T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999. CR - [8] G. Lee, S. T. Rizvi, C. S. Roman, Dual Rickart modules, Comm. Algebra 39(11) (2011) 4036-4058. CR - [9] S. H. Mohamed, B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, Cambridge, 1990. CR - [10] A. R. M. Hamzekolaee, A generalization of coretractable modules, J. Algebraic Syst. 5(2) (2017) 163–176. CR - [11] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991. CR - [12] J. M. Zelmanowitz, Correspondences of closed submodules, Proc. Amer. Math. Soc. 124(10) (1996) 2955–2960. CR - [13] J. Žemlicka, Completely coretractable rings, Bull. Iranian Math. 39(3) (2013) 523–528. CR - [14] Z. Zhengping, A lattice isomorphism theorem for nonsingular retractable modules, Canad. Math. Bull. 37(1) (1994) 140–144. CR - [15] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq. 7(3) (2000) 305–318. UR - https://doi.org/10.13069/jacodesmath.561322 L1 - https://dergipark.org.tr/en/download/article-file/709224 ER -