TY - JOUR T1 - Symmetry Analysis of Time Fractional Convection-reaction-diffusion Equation with a Delay AU - Nass, Aminu AU - Mpungu, Kassimu PY - 2019 DA - October JF - Results in Nonlinear Analysis JO - RNA PB - Erdal KARAPINAR WT - DergiPark SN - 2636-7556 SP - 113 EP - 124 VL - 2 IS - 3 LA - en AB - Lie symmetry theory of partial differential equations with both fractional and delay phenomena is considered. A complete group classification of time fractional convection-reaction-diffusion equation with a delay is presented. The Minimal symmetry algebra is found to be one dimensional. The classification is used to find symmetry reductions and exact solutions. KW - Lie symmetries; Fractional Delay; B$\ddot{a}$ckland Operator; Mittag-Leffler function CR - 1] Kolmanovskii, V.; Myshkis, A., Applied Theory of Functional Differential Equations,The Netherlands: Kluwer Academic Publishers, (1992). CR - [2] Ping S., Hongyong Z., Xuebing Z., Dynamic analysis of a fractional order delayedpredatorprey system with harvesting, Theory in Biosciences - Springer, 135 (2016), 5972. CR - [3] Abdallah, C., Dorato, P., Benitez-Read, J., and Byrne, R.,Delayed positive feed-back can stabilize oscillatory system, ACC. San Francisco, 3106-3107 (1993). CR - [4] Joseph, W.-H. S., Jianhong, W., Xingfu, Z.,A reaction-di usion model for a singlespecies with age structure. I Travelling wavefronts on unbounded domains, Proceedings of theRoyal Society of London. Series A Mathematical, Physical and Engineering Sciences, 457,1841 (2001). CR - [5] Meleshko, SV., Moyo, S., On the complete group classi cation of the reactiondi usionequation with a delay, Journal of Mathematical Analysis and Applications, 2016 (2016),963815. CR - [6] Long, F-S., Meleshko, SV., On the complete group classification of the one-dimensionalnonlinear Klein-Gordon equation with a delay, Mathematical Methods in the Applied Sciences,bf 39(12) (2016), 3255-3270. CR - [7] Tanthanuch J. Symmetry analysis of the nonhomogeneous inviscid burgers equation withdelay, Communications in Nonlinear Science and Numerical Simulation 17 (2012), 49784987. CR - [8] Pue-on, P., Meleshko, S.V. Group classification of second-order delay ordinary differential equations, Communications in Nonlinear Science and Numerical Simulation, 15 (2010),1444-1453. CR - [9] Tanthanuch, J., Meleshko, S.V. On de nition of an admitted Lie group for functionaldifferential equations, Communications in Nonlinear Science and Numerical Simulation, 9(2004), 117-125. CR - [10] Long, F-S., Meleshko, SV., Symmetry analysis of the nonlinear two dimensional Klein-Gordon equation with a time-varying delay, Mathematical Methods in the Applied Sciences,40 (2017), 4658-4673. CR - [11] Grigoriev, Y.N., Ibragimov, N.H., Kovalev, V.F., Meleshko S.V., Symmetries ofIntegro-Di erential Equation, Springer: New York, (2010). CR - [12] Kiryakova, V., Generalized Fractional Calculus and Applications, Pitman Research Notesin Mathematics Series. Longman Scienti c and Technical, Longma Group, Harlow 1994. CR - [13] Kilbas,A. A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of FractionalDifferential Equations, in: Jan V. Mill (Ed.), North-Holland Mathematics Studies, Elsevier,Amsterdam, The Netherlands, 204 (2006). CR - [14] Vasily E.T,On chain rule for fractional derivatives, Communications in Nonlinear Scienceand Numerical Simulation, 30(1-3) (20016) , 1-4. CR - [15] Laskri,Y., Nasser-eddine Tatar, The critical exponent for an ordinary fractional differential problem, Computers and Mathematics with Applications 59 (2010), 1266-1270. CR - [16] Singla, K., Gupta, R.K., Spacetime fractional nonlinear partial differential equations:symmetry analysis and conservation laws, Nonlinear Dyn 89(1) (2017), 321331. CR - [17] Chen, C., and Yao-Lin, J., Lie Group Analysis and Invariant Solutions for NonlinearTime-Fractional Di usion-Convection Equations, Commun. Theor. Phys. 68 (2017), 295. CR - [18] Wang, G.W., Xu, T.Z., Feng, T. , Lie Symmetry Analysis and Explicit Solutions of theTime Fractional Fifth-Order KdV Equation, PLoS ONE9(2), (2014) CR - [19] El Kinani, E. H. and Ouhadan, A., Lie symmetry analysis of some time fractional partialdifferential equations, Int. J. Mod. Phys. Conf. Ser. 38(2015), 15600751-15600758. CR - [20] Alshamrani, M. M., Zedan, H. A., Abu-Nawas, M. , Lie group method and fractionaldifferential equations, JNSA, 10, Issue 8(2017),4175-4180. CR - [21] Singla, K., Gupta, R.K., Generalized Lie symmetry approach for fractional order systemsof differential equations, III Journal of Mathematical Physics 58 (2017), 061501. CR - [22] Lukashchuk, S.Yu., Makunin, A.V., Group classification of nonlinear time-fractionaldiffusion equation with a source term, Appl.Math.Comput. 257(2015), 335-343. CR - [23] Hu, J., Ye, Y.J., Shen, S.F., Zhang, J., Lie symmetry analysis of the time fractionalKdV-type equation, Appl.Math.Comput. 233(2014), 439-444. CR - [24] Gazizov, R. K., Kasatkin A. A., Lukashchuk, S. Y., Continuous transformationgroups of fractional differential equations, Vestn. USATU 9(2007), 12535 CR - [25] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Y., Symmetry properties of fractionaldiffusion equations, Phys. Scr. T136 (2009), 0140-161. CR - [26] Gaur, M., Singh, K., Symmetry analysis of time-fractional potential Burger's equation,Math. Commun. 22 (2017), 111. CR - [27] Ovsiannikov, L. V., Group Analysis of Differential Equations, Nauka, Moscow (1978). CR - [28] Bluman, G., Cheviakov, A., Anco S., Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag New York, 168 (2010). CR - [29] Aminu, M. N., Symmetry Analysis and Invariants Solutions of Laplace Equation on Surfacesof Revolution, Advances in Mathematics: Scienti c Journal, 3(1) (2014), 23-31 . CR - [30] Ibragimov, N. H., Elementary Lie group analysis and ordinary differential equations, JohnWiley and Sons, Chichester (1999). CR - [31] Azad, H., Mustafa, M. T., Ziad, M., Group classification, optimal system and optimalsymmetry reductions of a class of Klien Gorden equations, system and optimal symmetryreductions of a class of Klien Gorden equations, Communications in nonlinear science andnumerical simulation, (2009). CR - [32] Ahmad, Y. A., On the Conservation Laws for a Certain Class of Nonlinear Wave Equation via a New Conservation Theorem, Communications in Nonlinear Science and Numerical Simulation, 17(4), (2012), 15661575. CR - [33] Nass, M. N., Fredericks, E., W-symmetries of jump-diffusion It stochastic differentialequations, Nonlinear Dyn, 90(4) (2017) , 2869-2877. CR - [34] Wafo, S. C., Mahomed, F. M, Integration of stochastic ordinary differential equationsfrom a symmetry standpoint, Journal of Physics A: Mathematical and General; 34 (2001),177-194. CR - [35] Unal, G., Symmetries of It^o and Stratonovich Dynamical Systems and their ConservedQuantities, Nonlinear Dynamics, 32 (2003), 417-426. CR - [36] Fredericks, E., Mahomed, F. M., Formal Approach for Handling Lie Point Symmetriesof Scalar First-Order Ito Stochastic Ordinary Differential Equations, Journal of NonlinearMathematical Physics 15 (2008), 44-59. CR - [37] Nass,, A, M., Fredericks, E., Lie Symmetry of It^o Stochastic Differential EquationDriven by Poisson Process, American Review of Mathematics and Statistics, 4(1) (2016),17-30. CR - [38] Nass, A, M., Fredericks, E., Symmetry of Jump-Diffusion Stochastic Differential Equations, Global and Stochastic Analysis, 3(1) (2016), 11-23. CR - [39] Zhang, Q., Ran, M., Xu, D., Analysis of the compact difference scheme for the semilinearfractional partial differential equation with time delay, Applicable Analysis, 96(11) (2017),1867-1884. CR - [40] Hale, J. K., Verduyn, L., Sjoerd, M., Introduction to Functional Differential Equations,Springer, New York, (1993). CR - [41] Morgadoa, L., Fordb, N.J., Limac, P.M., Analysis and numerical methods for fractionaldifferential equations with delay, Journal of Computational and Applied Mathematics, 252(2013), 159-168. CR - [42] Ermk, J., Hornek, J., Kisela, T., Stability regions for fractional differential systemswith a time delay, Communications in Nonlinear Science and Numerical Simulation, 31(1-3)(2016), 108-123. CR - [43] Pimenov, V. G., Hendy, A. S., Numerical Studies for Fractional Functional DifferentialEquations with Delay Based on BDF-Type Shifted Chebyshev Approximations, Abstract andApplied Analysis, 2015. CR - [44] Zhang ,J., Zhang, J., Symmetry analysis for time-fractional convection-diffusion equation,e-print arXiv:1512.01319. CR - [45] Polyanin, A.D., Zhurov. A.I., Exact separable solutions of delay reaction-diffusion equations and other nonlinear partial functional-differential equations, Communications in Nonlinear Science and Numerical Simulation, Vol. 19 (2014), No. 3, pp. 409-416. CR - [46] Polyanin, A.D., Zhurov, A.I, Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations, Communicationsin Nonlinear Science and Numerical Simulation, Vol. 19, No. 3 (2014), pp. 417-430. CR - [47] Polyanin, A.D., Zhurov., A.I. New generalized and functional separable solutions to non-linear delay reaction-diffusion equations, International Journal of Non-Linear Mechanics, Vol.59 ( 2014), p. 16-22. CR - [48] Polyanin, A.D., Zhurov. A.I. Generalized and functional separable solutions to nonlineardelay Klein-Gordon equations, Communications in Nonlinear Science and Numerical Simulation, Vol. 19 (2014), No. 8, pp. 2676-2689. CR - [49] Polyanin, A.D., Zhurov. A.I. Non-linear instability and exact solutions to some delayreaction-diffusion systems, International Journal of Non-Linear Mechanics, Vol. 62 (2014),pp. 33-40. CR - [50] Polyanin, A.D., Zhurov. A.I. Nonlinear delay reaction-diffusion equations with varyingtransfer coefficients: Exact methods and new solutions, Applied Mathematics Letters, Vol. 37(2014), pp. 43-48. CR - [51] Polyanin, A.D., Zhurov. A.I. The functional constraints method: Application to non-linear delay reaction-diffusion equations with varying transfer coefficients, International Journalof Non-Linear Mechanics, Vol. 67 (2014), pp. 267-277. CR - [52] Polyanin, A.D., Zhurov. A.I. The generating equations method: Constructing exact solutions to delay reaction-diffusion systems and other non-linear coupled delay PDEs, International Journal of Non-Linear Mechanics, Vol. 71 (2015), pp. 104-115. [53] Polyanin, A.D., Sorokin, V.G. Nonlinear delay reaction-diffusion equations: Traveling-wave solutions in elementary functions, Applied Mathematics Letters, Vol. 46 (2015), pp.38-43. CR - [54] Ouyang, Z. G. Existence and Uniqueness of the Solutions for a Class of Nonlinear FractionalOrder Partial Differential Equations with delay, Comput. Math. Appl. 61 (2011), 860-870. CR - [55] Zhu, B., Liu, L., Wu, Y. Existence and Uniqueness of Global Mild Solutions for a Class ofNonlinear Fractional Reaction-diffusion Equations with delay, Comput. Math. Appl. (2016). CR - [56] Singla, K., Gupta, R.K., Generalized Lie symmetry approach for fractional order systemsof differential equations III, Journal of Mathematical Physics 58 (2017), 061501. CR - [57] Singla, K., Gupta, R.K., On invariant analysis of space-time fractional nonlinear systemsof partial differential equations. II, Journal of Mathematical Physics 58 (2017), 051503. CR - [58] Singla, K., Gupta, R.K., On invariant analysis of some time fractional nonlinear systemsof partial differential equations. I, Journal of Mathematical Physics 57 (2016), 101504 . CR - [59] Singla, K., Gupta, R.K., Comment on Lie symmetries and group classification of a classof time fractional evolution systems,Journal of Mathematical Physics 57 (2017), 054101. CR - [60] Diego, A. G., Galeano, C.H., Mantilla, J.M., Computational examples of reaction-convection-diffusion equations solution under the influence of fluid flow: First example, Applied Mathematical Modelling, 36 (2012), 50295045 CR - [61] Deng, D. The study of a fourth-order multistep ADI method applied to nonlinear delay reaction diffusion equations, Applied Numerical Mathematics 96(2015), 118133 CR - [62] Zhang, Q., Zhang, C. A new linearized compact multisplitting scheme for the nonlinearconvection-reaction-diffusion equations with delay, Commun Nonlinear Sci Numer Simulat 18(2013), 32783288. CR - [63] Makungu, J., Haario, H., Mahera, W. C. A generalized 1-dimensional particle transport method for convection diffusion reaction model, Afr. Mat. (2012) 23:2139. UR - https://dergipark.org.tr/en/pub/rna/article/562334 L1 - https://dergipark.org.tr/en/download/article-file/839446 ER -