TY - JOUR T1 - pH effect on hydrothermal synthesis of the coordination polymers containing pyrazine-2,3-dicarboxylate: Investigation of thermal stability, luminescence and electrical conductivity properties AU - Ay, Burak AU - Yıldız, Emel AU - Zubieta, Jon PY - 2020 DA - February Y2 - 2019 DO - 10.18596/jotcsa.565700 JF - Journal of the Turkish Chemical Society Section A: Chemistry JO - JOTCSA PB - Turkish Chemical Society WT - DergiPark SN - 2149-0120 SP - 243 EP - 258 VL - 7 IS - 1 LA - en AB - Hydrothermal reactions of lanthanide(III) salt with2,3-pyrazinedicarboxylic (2,3-pzdc) acid yielded the coordination polymers [La2(2,3-pzdc)3(H2O)]n.3nH2O(1) and [La2(2,3-pzdc)3(H2O)]n.2nH2O(2).Compoundswere obtained in a three dimensional form with different pH values undersubcritical water conditions. The structures had variable coordination numbers. In addition, pH values play an important role inthe structural chemistry of these materials. Different characterization techniques (Elementalanalysis, FT-IR, ICP-OES, TG/DTA, FESEM, PXRD, BET and single crystal X-ray)were carried out to confirm crystallinity, porosity, purity and chemicalcomposition of the coordination polymers. Crystal structures of the polymers wereexamined in detail. Their thermal stability, luminescence and electricalconductivity properties were investigated in the solid state. KW - pH effect KW - hydrothermal synthesis KW - lanthanum coordination polymer CR - 1. Guillerm V, Kim D, Eubank JF, Luebke R, Liu X, Adil K, Lah MS, Eddaoudi M. A supermolecular building approach for the design and construction of metal-organic frameworks. Chemical Society Reviews 2014; 43: 6141-6172. DOI: 10.1039/c4cs00135d CR - 2. Zhou X, Liu P, Huang W-H, Kang M, Wang Y-Y, Shi Q-Z. Solvents influence on sizes of channels in three fry topological Mn(II)-MOFs based on metal–carboxylate chains: syntheses, structures and magnetic properties. CrystEngComm 2013; 15: 8125-8133. DOI: 10.1039/C3CE41120F CR - 3. Wang P, Fan R-Q, Liu X-R, Wang L-Y, Yang Y-L, Cao W-W, Yang B, Hasi W, Su Q, Mu Y. Two-/three-dimensional open lanthanide-organic frameworks containing rigid/flexible dicarboxylate ligands: synthesis, crystal structure and photoluminescent properties. CrystEngComm 2013; 15: 1931-1949. DOI: 10.1039/c3ce26684b CR - 4. Dhakshinamoorthy A, Alvaro M, Garcia H. Commercial metal-organic frameworks as heterogeneous catalysts. Chemical Communications 2012; 48: 11275-11289. DOI: 10.1039/c2cc34329k CR - 5. Nguyen LTL, Le KKA, Truong HX, Phan NTS. Metal-organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catalysis Science & Technology 2012; 2: 521-528. DOI: 10.1039/c1cy00386k CR - 6. Tan Y-X, He Y-P, Zhang J. Cluster-Organic Framework Materials as Heterogeneous Catalysts for High Efficient Addition Reaction of Diethylzinc to Aromatic Aldehydes. Chemistry of Materials 2012; 24: 4711-4716. DOI:10.1021/cm302953x CR - 7. Tian D, Li Y, Chen R-Y, Chang Z, Wang G-Y, Bu X-H. A luminescent metal-organic framework demonstrating ideal detection ability for nitroaromatic explosives. Journal of Materials Chemistry A 2014; 2: 1465-1470. DOI: 10.1039/c3ta13983b CR - 8. Guo Y, Feng X, Han T, Wang S, Lin Z, Dong Y, Wang B. Tuning the Luminescence of Metal-Organic Frameworks for Detection of Energetic Heterocyclic Compounds. Journal of the American Chemical Society 2014; 136: 15485-15488. DOI: 10.1021/ja508962m CR - 9. Kim TK, Lee JH, Moon D, Moon HR. Luminescent Li-Based Metal-Organic Framework Tailored for the Selective Detection of Explosive Nitroaromatic Compounds: Direct Observation of Interaction Sites. Inorganic Chemistry 2012; 52: 589-595. DOI: 10.1021/ic3011458 CR - 10. Gándara F, Furukawa H, Lee S, Yaghi OM. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks. Journal of the American Chemical Society 2014; 136: 5271-5274. DOI: 10.1021/ja501606h CR - 11. Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T. Methane Storage in Metal-Organic Frameworks: Current Records, Surprise Findings, and Challenges. Journal of the American Chemical Society 2013; 135: 11887-11894. DOI: 10.1021/ja4045289 CR - 12. Li Y-W, Li J-R, Wang L-F, Zhou B-Y, Chen Q, Bu X-H. Microporous metal-organic frameworks with open metal sites as sorbents for selective gas adsorption and fluorescence sensors for metal ions. Journal of Materials Chemistry A 2013; 1: 495-499. DOI: 10.1039/c2ta00635a CR - 13. Bloch ED, Hudson MR, Mason JA, Chavan S, Crocellà V, Howe JD, Lee K, Dzubak AL, Queen WL, Zadrozny JM, Geier SJ, Lin L-C, Gagliardi L, Smit B, Neaton JB, Bordiga S, Brown CM, Long JR. Reversible CO Binding Enables Tunable CO/H2 and CO/N2 Separations in Metal-Organic Frameworks with Exposed Divalent Metal Cations. Journal of the American Chemical Society 2014; 136: 10752-10761. DOI: 10.1021/ja505318p CR - 14. Dou Z, Yu J, Cui Y, Yang Y, Wang Z, Yang D, Qian G. Luminescent Metal-Organic Framework Films As Highly Sensitive and Fast-Response Oxygen Sensors. Journal of the American Chemical Society 2014; 136: 5527-5530. DOI: 10.1021/ja411224j CR - 15. Cunha D, Ben Yahia M, Hall S, Miller SR, Chevreau H, Elkaïm E, Maurin G, Horcajada P, Serre C. Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal-Organic Frameworks. Chemistry of Materials 2013; 25: 2767-2776. DOI: 10.1021/cm400798p CR - 16. Seetharaj R, Vandana PV, Arya P, Mathew S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian Journal of Chemistry 2016; 12: 295-315. DOI: 10.1016/j.arabjc.2016.01.003 CR - 17. Li P-Z, Wang X-J, Li Y, Zhang Q, Tan RHD, Lim WQ, Ganguly R, Zhao Y. Co(II)-tricarboxylate metal-organic frameworks constructed from solvent-directed assembly for CO2 adsorption. Microporous and Mesoporous Materials 2013; 176: 194-198. DOI: 10.1016/j.micromeso.2013.03.052 CR - 18. Sun F, Zhu G. Solvent-directed synthesis of chiral and non-centrosymmetric metal-organic frameworks based on pyridine-3,5-dicarboxylate. Inorganic Chemistry Communications 2013; 38: 115-118. DOI: 10.1016/j.inoche.2013.10.018 CR - 19. Liu T, Luo D, Xu D, Zeng H, Lin Z. Solvent induced structural variation in magnesium carboxylate frameworks. Inorganic Chemistry Communications 2013; 29: 110-113. DOI: 10.1016/j.inoche.2012.12.017 CR - 20. Chen L, Jia H-Y, Hong X-J, Chen D-H, Zheng Z-P, Jin H-G, Gu Z-G, Cai Y-P. Construction of one pH-independent 3-D pillar-layer lead-organic framework containing tetrazole-1-acetic acid. Inorganic Chemistry Communications 2013; 27: 22-25. DOI: 10.1016/j.inoche.2012.10.010 CR - 21. Li S-L, Tan K, Lan Y-Q, Qin J-S, Li M-N, Du D-Y, Zang H-Y, Su Z-M. pH-Dependent Binary Metal-Organic Compounds Assembled from Different Helical Units: Structural Variation and Supramolecular Isomers. Crystal Growth & Design 2010; 10: 1699-1705. DOI: 10.1021/cg9012763 CR - 22. Gabriel C, Perikli M, Raptopoulou CP, Terzis A, Psycharis V, Mateescu C, Jakusch T, Kiss T, Bertmer M, Salifoglou A. pH-Specific Hydrothermal Assembly of Binary and Ternary Pb(II)-(O,N-Carboxylic Acid) Metal Organic Framework Compounds: Correlation of Aqueous Solution Speciation with Variable Dimensionality Solid-State Lattice Architecture and Spectroscopic Signatures. Inorganic Chemistry 2012; 51: 9282-9296. DOI: 10.1021/ic300850g CR - 23. Ollivier PJ, DeBoard JRD, Zapf PJ, Zubieta J, Meyer LM, Wang C, Mallouk TE, Haushalter RC. Hydrothermal synthesis and crystal structures of two novel vanadium oxides containing interlamellar transition metal complexes. Journal of Molecular Structure 1998; 470: 49-60. DOI: 10.1016/S0022-2860(98)00469-4 CR - 24. Kim D, Song X, Yoon JH, Lah MS. 3,6-Connected Metal-Organic Frameworks Based on Triscarboxylate as a 3-Connected Organic Node and a Linear Trinuclear Co3(COO)6 Secondary Building Unit as a 6-Connected Node. Crystal Growth & Design 2012; 12: 4186-4193. DOI: 10.1021/cg300686n CR - 25. Darling K, Ouellette W, Prosvirin A, Walter S, Dunbar KR, Zubieta J. Hydrothermal synthesis and structures of materials of the M(II)/tetrazole/sulfate family (M(II)=Co, Ni; tetrazole=3- and 4-pyridyltetrazole and pyrazinetetrazole). Polyhedron 2013; 58: 18-29. DOI: 10.1016/j.poly.2012.07.043 CR - 26. Sun Y-X, Sun W-Y. Influence of temperature on metal-organic frameworks. Chinese Chemical Letters 2014; 25: 823-828. DOI: 10.1016/j.cclet.2014.04.032 CR - 27. Liu G-X, Xu H, Zhou H, Nishihara S, Ren X-M. Temperature-induced assembly of MOF polymorphs: Syntheses, structures and physical properties. CrystEngComm 2012; 14: 1856-1864. DOI: 10.1039/c1ce05369h CR - 28. Calderone PJ, Banerjee D, Plonka AM, Kim SJ, Parise JB. Temperature dependent structure formation and photoluminescence studies of a series of magnesium-based coordination networks. Inorganica Chimica Acta 2013; 394: 452-458. DOI: 10.1016/j.ica.2012.08.033 CR - 29. Mahata P, Prabu M, Natarajan S. Role of Temperature and Time in the Formation of Infinite -M-O-MLinkages and Isolated Clusters in MOFs: A Few Illustrative Examples. Inorganic Chemistry 2008; 47: 8451-8463. DOI: 10.1021/ic800621q CR - 30. Wenkin M, Touillaux R, Devillers M. Bismuth derivatives of 2,3-dicarboxypyrazine and 3,5-dicarboxypyrazole as precursors for bismuth oxide based materials. New Journal of Chemistry 1998; 22: 973-976. DOI:10.1039/A801161C CR - 31. Xu H, Ma H, Xu M, Zhao W, Guo B. catena-Poly[[[diaquairon(II)]-μ-pyrazine-2,3-dicarboxylato] dihydrate]. Acta Crystallographica Section E Structure Reports Online 2007; 64: m104-m104. Doi:10.1107/S1600536807064501 CR - 32. Liu H-Y, Wang H-Y, Shi Y-H. Pyrazine-2,3-dicarboxylate-bridged polymeric and dinuclear complexes involving decameric water clusters. Journal of Coordination Chemistry 2011; 64: 2859-2868. DOI: 10.1080/00958972.2011.608161 CR - 33. Okubo T, Kondo M, Kitagawa S. Synthesis, Structure, and Magnetic Properties of One-Dimensional Copper(II) Coordination Polymer,{[Cu(pyrazine-2,3-dicarboxylate)(H2O)2]2H2O}n. Synthetic Metals 1997; 85: 1661-1662. DOI: 10.1016/S0379-6779(97)80386-4 CR - 34. Beobide G, Castillo O, Luque A, Garcia-Couceiro U, Garcia-Teran JP, Roma´n P. Supramolecular Architectures and Magnetic Properties of Coordination Polymers Based on Pyrazinedicarboxylato Ligands Showing Embedded Water Clusters. Inorganic Chemistry 2006; 45: 5367-5382. DOI: 10.1021/ic060221r CR - 35. Yeşilel OZ, Mutlu A, Büyükgüngör O. Novel dinuclear and polynuclear copper(II)-pyrazine-2,3-dicarboxylate supramolecular complexes with 1,3-propanediamine, N,N,N′,N′-tetramethylethylenediamine and 2,2′-bipyridine. Polyhedron 2009; 28: 437-444. DOI: 10.1016/j.poly.2008.11.044 CR - 36. Yang K, Luo J-H, Liu Z-H. Synthesis, structures and luminescent property of two lanthanon complexes assembled from 2,3-pyrazinedicarboxylic acid and ammonia. Inorganica Chimica Acta 2012; 391: 206-209. DOI: 10.1016/j.ica.2012.04.040 CR - 37. Zou J, Xu Z, Chen W, Lo KM, You X. Synthesis, structure and magnetic properties of new polymeric compounds containing manganese(II)–Pzdc (PzdcH : 2,3-Pyrazinedicarboxylic acid). Polyhedron 1999; 18: 1507-1512. DOI: 10.1016/S0277-5387(99)00019-4 CR - 38. Yeşilel OZ, Mutlu A, Büyükgüngör O. A new coordination mode of pyrazine-2,3-dicarboxylic acid and its first monodentate complexes: Syntheses, spectral, thermal and structural characterization of [Cu(pzdca)(H2O)(en)2]•H2O and [Cu(pzdca)(H2O)(dmpen)2]. Polyhedron 2008; 27: 2471-2477. DOI: 10.1016/j.poly.2008.04.046 CR - 39. Li X-H, Shi Q, Hu M-L, Xiao H-P. A crossing double chain {[Cu(PZDC2]•3(H2O)• 2(IDZC)}n (H2PZDC=2,3-pyrazinedicarboxylic acid, IDZC=imidazole cation). Inorganic Chemistry Communications 2004; 7: 912-914. DOI:10.1016/j.inoche.2004.05.017 CR - 40. Bayon JC, Net G, Real J, Rasmussen PG. Synthesis and reactivity of rhodium(I) and iridium(I) complexes of the dianions of 2,3-pyrazinedicarboxylic and 2,5-pyrazinedicarboxylic acid. Journal of Organometallic Chemistry 1990; 385: 409-415. DOI: 10.1016/0022-328X(90)85012-N CR - 41. Wenkin M, Devillers M, Tinant B, Deelercq J-P. Diammine(pyrazine-2,3-dicarboxylato-N,O)palladium(II):synthesis, crystal structure, spectroscopic and thermal properties. Inorganica Chimica Acta 1997; 258: 113-118. DOI: 10.1016/S0020-1693(96)05533-8 CR - 42. Yin H, Liu S-X. Syntheses, crystal structures and photoluminescence of three coordination polymers with 2,3-pyrazinedicarboxylic acid and N-donor ligands. Polyhedron 2007; 26: 3103-3111. DOI: 10.1016/j.poly.2007.02.011 CR - 43. Yang L-R, Song S, Zhang W, Zhang H-M, Bu Z-W, Ren T-G. Synthesis, structure and luminescent properties of neodymium(III) coordination polymers with 2,3-pyrazinedicarboxylic acid. Synthetic Metals 2011; 161: 647-654. DOI:10.1016/j.synthmet.2010.12.005 CR - 44. SMART DCS, version 5.630, Bruker-AXS Inc., Madison, WI, 1997-2002. CR - 45. SAINT PLUS DRS, version 6.45A, Bruker-AXS Inc., Madison, WI, 1997-2002. CR - 46. Sheldrick GM, University of Göttingen, Göttingen, Germany, 1996. CR - 47. SHELXTL PC v, Bruker-AXS Inc., Madison, WI, 2002. CR - 48. Yang Q, Xie G, Wei Q, Chen S, Gao S. Structures and standard molar enthalpies of formation of a series of Ln(III)–Cu(II) heteronuclear compounds with pyrazine-2,3-dicarboxylic acid. Journal of Solid State Chemistry 2014; 215: 26-33. DOI: 10.1016/j.jssc.2014.03.021 CR - 49. Zhuang G, Chen W, Zeng G, Wang J, Chen W. Position of substituent dependent dimensionality in Ln-Cu heterometallic coordination polymers. CrystEngComm 2012; 14: 679-683. DOI: 10.1039/c1ce05864a CR - 50. Beaula TJ, Joe IH, Rastogi VK, Jothy VB. Chemical Computations and Vibrational Spectral Studies of 2,3-Pyrazinedicarboxylic Acid. Materials Today: Proceedings 2015; 2: 977-981. DOI: 10.1016/j.matpr.2015.06.020 CR - 51. Sriramula VSB, Katreddi HR. Rare Earth Nitrate Complexes with an ONO Schiff Base Ligand:Spectral, Thermal, Luminescence and Biological Studies. Iranian Journal of Chemistry and Chemical Engineering 2017; 36: 101-109. CR - 52. Chen Y, Li H, Yue B, Liu Y, Chu H, Zhao Y. Synthesis, characterization and luminescent property of metal-ion-doped terbium complexes of 2,3-Pyrazinedicarboxylate. Journal of Luminescence 2012; 132: 1414-1419. DOI: 10.1016/j.jlumin.2012.01.030 CR - 53. Zhao Q, Liu X-M, Li H-R, Zhang Y-H, Bu X-H. High-performance fluorescence sensing of lanthanum ions (La3+) by a polydentate pyridyl-based quinoxaline derivative. Dalton Transactions 2016; 45: 10836-10841. DOI: 10.1039/c6dt01161f CR - 54. Yin H, Liu S. Copper and zinc complexes with 2,3-pyridinedicarboxylic acid or 2,3-pyrazinedicarboxylic acid: Polymer structures and magnetic properties. Journal of Molecular Structure 2009; 918: 165-173. DOI: 10.1016/j.molstruc.2008.07.033 CR - 55. Mahata P, Ramya KV, Natarajan S. Synthesis, structure and optical properties of rare-earth benzene carboxylates. Dalton Transactions 2007: 4017-4026. DOI: 10.1039/b706363f CR - 56. Santiago-González B, Vázquez-Vázquez C, Blanco-Varela MC, Gaspar Martinho JM, Ramallo-López JM, Requejo FG, López-Quintela MA. Synthesis of water-soluble gold clusters in nanosomes displaying robust photoluminescence with very large Stokes shift. Journal of Colloid and Interface Science 2015; 455: 154-162. DOI: 10.1016/j.jcis.2015.05.042 CR - 57. Raj PJ, Bahulayan D. “MCR-Click” synthesis of coumarin-tagged macrocycles with large Stokes shift values and cytotoxicity against human breast cancer cell line MCF-7. Tetrahedron Letters 2017; 58: 2122-2126. DOI: 10.1016/j.tetlet.2017.04.052 CR - 58. Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P. Electrically conductive polymers and composites for biomedical applications. RSC Advances 2015; 5: 37553-37567. DOI: 10.1039/c5ra01851j UR - https://doi.org/10.18596/jotcsa.565700 L1 - https://dergipark.org.tr/en/download/article-file/892303 ER -