TY - JOUR T1 - Results on quasi-statistical limit and quasi-statistical cluster points AU - Özgüç, İlknur PY - 2020 DA - June Y2 - 2019 DO - 10.31801/cfsuasmas.567734 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 646 EP - 653 VL - 69 IS - 1 LA - en AB - In this paper we introduce the concepts of quasi-statistical limit point and quasi-statistical cluster point of a sequence. We give some inclusion results concerning these concepts. We also give the relationship between the Knopp core and quasi-statistical core of a sequence. Finally we state some theorems which deal with quasi-summability and quasi-statistical convergence of a sequence under some assumptions. KW - statistical convergence KW - quasi-statistical convergence KW - quasi-statistical limit points KW - quasi-statistical cluster points CR - Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. CR - Fridy, J. A., On statistical convergence, Analysis, 5 (1985) 301-313. CR - Fridy, J. A., Statistical limit points, Proc. Amer. Math. Soc., 118 (1993), 1187-1192. CR - Fridy, J. A. and Orhan,C., Statistical limit superior and limit inferior, Proc. Amer. Math. Soc., 125 (1997), 3625-3631. CR - Fridy, J. A. and Orhan, C., Statistical core theorems, J. Math. Anal. Appl., 208 (1997), 520-527. CR - Connor, J., The statistical and strong p-Cesàro convergence of sequences, Analysis, 8 (1988) 47-63. CR - Connor, J., On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32 (1989), 194-198. CR - Connor, J., Demirci, K. and Orhan, C., Multipliers and factorization for bounded statistically convergence sequences, Analysis (Munich) 22(4) (2002), 321-333. CR - Demirci, K. and Orhan, C., Bounded multipliers of bounded A-statistically convergent sequences, Journal of Mathematical Analysis and Applications, 235 (1999), 122-129. CR - Ganichev, M. and Kadets, V., Filter convergence in Banach spaces and generalized bases, Taras Banach (Ed.), General Topology in Banach Spaces, NOVA Science Publishers, Huntington, New York (2001), 61-69. CR - Sakaoğlu Özgüç, I. and Yurdakadim, T., On quasi-statistical convergence, Commun. Fac. Sci. Univ. Ank. Series A1, 61 (2012), 11-17. CR - Šalát, T., On statistically convergent sequences of real numbers, Math. Slovaca, 30(2) (1980), 139-150. CR - Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375. CR - Steinhaus, H., Sur la convergence ordinarie et la convergence asymtotique, Colloq. Math., 2 (1951), 73-74. CR - Yurdakadim, T., Taş, E. and Sakaoğlu, İ., Approximation of functions by the sequence of integral operators, Appl. Math. Comput., 219 (2012), 3863-3871. CR - Zygmund, A., Trigonometric series, 2nd Ed. Cambridge Univ. Press, 1979. UR - https://doi.org/10.31801/cfsuasmas.567734 L1 - https://dergipark.org.tr/en/download/article-file/946804 ER -