TY - JOUR T1 - MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS TT - ÜZÜM, NAR VE KARA HAVUÇ SULARININ FARKLI YÖNTEMLERLE KONSANTRASYONUNUN MATEMATİKSEL MODELLENMESİ AU - Dinçer, Cüneyt AU - Çam, İhsan Burak AU - Torun, Mehmet AU - Başünal Gülmez, Handan AU - Topuz, Ayhan PY - 2019 DA - October DO - 10.15237/gida.GD19080 JF - Gıda JO - GIDA PB - The Association of Food Technology WT - DergiPark SN - 1300-3070 SP - 1092 EP - 1105 VL - 44 IS - 6 LA - en AB - In the presentstudy, grape, pomegranate and black carrot juices were concentrated to 65 °Brix(Bx) from initial concentrations of 15.93, 13.91 and 11.23 °Bx respectively.The concentration kinetics of the juices were investigated using a rotaryvacuum evaporator at 80°C, a microwave vacuum evaporator at 180 W and 300 W andosmotic distillation (OD) at room temperature. Experimental data were comparedaccording to three statistical parameters: the correlation coefficient (R2),reduced chi-squared (χ2) value, and root mean-square error (RMSE), with valuespredicted by 13 models. Midilli model exhibited a better fit for theconcentration kinetics (R2 ≥ 0.9990; χ2 ≤ 0.4588; RMSE ≤0.5350) than the other models, in general. This model was followed by thelogarithmic, Page and two-term exponential models. The logarithmic modelexhibited slightly better fitting for the thermal concentration method thanMidilli model. The lowest energy consumption (1.334-1.540 kWh) was determinedfor the OD technique. KW - Juice concentration KW - mathematical modeling KW - microwave vacuum evaporation KW - osmotic distillation N2 - Bu çalışmadabaşlangıç °Briks değerleri sırasıyla 15.93, 13.91 ve 11.23 olan üzüm, nar vesiyah havuç suları 65 °Briks değerine kadar konsantre edilmiştir. Meyvesularının konsantrasyon kinetik değerleri rotary vakum evoparatörde 80 ˚C’de,mikrodalga vakum evaporatörde 180 ve 300 W’da, ozmotik distilasyonda ise odasıcaklığında çalışılarak belirlenmiştir. Elde edilen deneysel verilerin 13farklı modele uygunluğu, korelasyon katsayısı (R2), azaltılmışki-kare (χ2) değeri ve hata kareler ortalamasının karekökü (RMSE) olmak üzere 3istatistiksel parametreye göre karşılaştırılmıştır. Konsantrasyon kinetiğiaçısından Midilli modeli (R2 ≥ 0.9990; χ2 ≤ 0.4588; RMSE≤ 0.5350) diğer modellerden genel olarak daha uyumlu bulunmuş olup, bu modelilogaritmik, Page ve iki terimli eksponansiyel modelleri izlemiştir. Termalkonsantrasyon yöntemi için logaritmik modelin Midilli modeline göre daha uyumluolduğu görülmüştür. En düşük enerji tüketimi (1.334-1.540 kWh) ise ozmotik distilasyontekniğinde belirlenmiştir. CR - 1. Jiao B, Cassano A, Drioli E. Recent advances on membrane processes for the concentration of fruit juices: a review. J. Food Eng. 2004; 63(3), 303-324. https://doi.org/10.1016/j.jfoodeng.2003.08.003 CR - 2. Bánvölgyi S, Horváth S, Stefanovits-Bányai É, Békássy-Molnár E, Vatai G. Integrated membrane process for blackcurrant (Ribes nigrum L.) juice concentration. Desalination 2009; 241(1-3), 281-287. https://doi.org/10.1016/j.desal.2007.11.088 CR - 3. Dincer C, Tontul I, Topuz A A comparative study of black mulberry juice concentrates by thermal evaporation and osmotic distillation as influenced by storage. Innovative Food Sci. Emerg. Technol. 2016; 38, 57-64. https://doi.org/10.1016/j.ifset.2016.09.012 CR - 4. Bozkir H, Baysal T. Concentration of apple juice using a vacuum microwave evaporator as a novel technique: Determination of quality characteristics. J. Food Process Eng. 2017; 40(5), e12535. https://doi.org/10.1111/jfpe.12535 CR - 5. Assawarachan R, Noomhorm A. Effect of operating condition on the kinetic of color change of concentrated pineapple juice by microwave vacuum evaporation. J. Food Agric. Environ, 2008; 6(3&4), 47-53. CR - 6. Assawarachan R, Noomhorm A. Mathematical models for vacuum‐microwave concentration behavior of pineapple juice. J. Food Process Eng, 2011; 34(5), 1485-1505. https://doi.org/10.1111/j.1745-4530.2009.00536.x CR - 7. Fazaeli M, Hojjatpanah G, Emam-Djomeh Z. Effects of heating method and conditions on the evaporation rate and quality attributes of black mulberry (Morus nigra) juice concentrate. J. Food Sci. Technol. 2013; 50(1), 35-43. https://doi.org/10.1007/s13197-011-0246-y CR - 8. Fazaeli M, Yousefi S, Emam-Djomeh Z. Investigation on the effects of microwave and conventional heating methods on the phytochemicals of pomegranate (Punica granatum L.) and black mulberry juices. Food Res. Int. 2013; 50(2), 568-573. https://doi.org/10.1016/j.foodres.2011.03.043 CR - 9. Yousefi S, Emam-Djomeh Z, Mousavi S M A, Askari G R. Comparing the effects of microwave and conventional heating methods on the evaporation rate and quality attributes of pomegranate (Punica granatum L.) juice concentrate. Food Bioprocess Technol. 2012; 5(4), 1328-1339. https://doi.org/10.1007/s11947-011-0603-x CR - 10. Assawarachan R, Noomhorm A. Changes in color and rheological behavior of pineapple concentrate through various evaporation methods. Int. J. Agric. Biol. Eng. 2010; 3(1), 74-84. CR - 11. Yaldýz O, Ertekýn C. Thin layer solar drying of some vegetables. Drying Technol. 2001; 19(3-4), 583-597. https://doi.org/10.1081/DRT-100103936 CR - 12. Delgado T, Pereira J A, Baptista P, Casal S, Ramalhosa E. Shell's influence on drying kinetics, color and volumetric shrinkage of Castanea sativa Mill. fruits. Food Res. Int. 2014; 55, 426-435. https://doi.org/10.1016/j.foodres.2013.11.043 CR - 13. Demiray E, Tulek Y. Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat Mass Transfer. 2014; 50(6), 779-786. https://doi.org/10.1007/s00231-013-1286-9 CR - 14. Malekjani N, Emam-Djomeh Z, Hashemabadi S H, Askari G R. Modeling Thin Layer Drying Kinetics, Moisture Diffusivity and Activation Energy of Hazelnuts during Microwave-Convective Drying. Int. J. Food Eng. 2018;14(2). https://doi.org/10.1515/ijfe-2017-0100 CR - 15. Karabacak, A. Ö., Suna, S., Tamer, C. E., Çopur, Ö. U. Effects of oven, microwave and vacuum drying on drying characteristics, colour, total phenolic content and antioxidant capacity of celery slices. Qual. Assur. Saf. Crops Food 2018; 10(2), 193-205. https://doi.org/10.3920/QAS2017.1197 CR - 16. Goula A M, Tzika A, Adamopoulos K G. Kinetic Models of Evaporation and Total Phenolics Degradation during Pomegranate Juice Concentration. Int. J. Food Eng 20104; 10(3), 383-392. https://doi.org/10.1515/ijfe-2014-0016 CR - 17. Kırca A, Özkan M, Cemeroglu B. Stability of black carrot anthocyanins in various fruit juices and nectars. Food Chem. 2006; 97(4), 598-605. https://doi.org/10.1016/j.foodchem.2005.05.036 CR - 18. Tajchakavit S, Boye J I, Bélanger D, Couture R. Kinetics of haze formation and factors influencing the development of haze in clarified apple juice. Food Res. Int. 2001; 34(5), 431-440. https://doi.org/10.1016/S0963-9969(00)00188-5 CR - 19. Cissé M, Vaillant F, Bouquet S, Pallet D, Lutin F, Reynes M, Dornier M. Athermal concentration by osmotic evaporation of roselle extract, apple and grape juices and impact on quality. Innovative Food Sci. Emerg. Technol. 2011; 12(3), 352-360. https://doi.org/10.1016/j.ifset.2011.02.009 CR - 20. Onsekizoglu P. Production of high quality clarified pomegranate juice concentrate by membrane processes. J. Membr. Sci. 2013; 442, 264-271. https://doi.org/10.1016/j.memsci.2013.03.061 CR - 21. Romero J, Rios G M, Sanchez J, Bocquet S, Savedra A. Modeling heat and mass transfer in osmotic evaporation process. AlChE J. 2003; 49(2), 300-308. https://doi.org/10.1002/aic.690490203 CR - 22. Valdés H, Romero J, Saavedra A, Plaza A, Bubnovich V. Concentration of noni juice by means of osmotic distillation. J. Membr. Sci. 2009; 330(1-2), 205-213. https://doi.org/10.1016/j.memsci.2008.12.053 CR - 23. Onsekizoglu Bagci P. Potential of membrane distillation for production of high quality fruit juice concentrate. Crit. Rev. Food Sci. Nutr. 2015; 55(8), 1098-1113. https://doi.org/10.1080/10408398.2012.685116 CR - 24. Midilli A, Kucuk H, Yapar Z. A new model for single-layer drying. Drying Technol. 2002; 20(7), 1503-1513. https://doi.org/10.1081/DRT-120005864 CR - 25. Swain S, Samuel D V K, Bal L M, Kar A, Sahoo G P. Modeling of microwave assisted drying of osmotically pretreated red sweet pepper (Capsicum annum L.). Food Sci. Biotechnol. 2012; 21(4), 969-978. https://doi.org/10.1007/s10068-012-0127-9 CR - 26. Vega‐Gálvez A, Lemus‐Mondaca R, Bilbao‐Sainz C, Yagnam F, Rojas A. Mass transfer kinetics during convective drying of red pepper var. Hungarian (Capsicum annuum L.): mathematical modeling and evaluation of kinetic parameters. J. Food Process Eng. 2008; 31(1), 120-137. https://doi.org/10.1111/j.1745-4530.2007.00145.x UR - https://doi.org/10.15237/gida.GD19080 L1 - https://dergipark.org.tr/en/download/article-file/857857 ER -