TY - JOUR T1 - İmmün Kontrol Noktası İnhibitörleri Ctla-4 ve Pd-1/Pd-l1’in İmmünoterapideki Yeri TT - Immune Checkpoint Inhibitors: Ctla-4 and Pd-1/Pd-l1 in Immunotherapy AU - Kahveci, Kübra AU - Türkoğlu, Melisa PY - 2019 DA - December Y2 - 2019 DO - 10.29048/makufebed.569375 JF - Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi JO - MAKUFEBED PB - Burdur Mehmet Akif Ersoy University WT - DergiPark SN - 1309-2243 SP - 210 EP - 218 VL - 10 IS - 2 LA - tr AB - Kanser immünoterapisi,kanserle mücadelede insan immün sistemini güçlendirmeyi amaçlar ve immünsistemin kanser ile normal hücreler arasındaki en iyi biyokimyasalfarklılıkları tespit etme yeteneğine dayanır. İmmünoterapi; özgüllüğü, uzunsüreli etkileri ve iyileşmeye olan katkıları sayesinde, kanser tedavisindekiyerini sağlamlaştırmaya devam etmektedir. Tümörler, anti-tümör immüntepkilerini inhibe etmek için bağışıklık kontrol noktaları olarak da bilineninhibitör reseptörleri kullanır. Birçok kişide immün-baskılamaya, SitotoksikT-Lenfosit-İlişkili Antijen-4 (CTLA-4) ve Programlanmış Ölüm-1 (PD-1)reseptörleri aracılık eder. CTLA-4 ve/veya PD-1 kontrol noktası inhibitörlerinihedefleyen monoklonal antikor (mAb) temelli terapilerin, birçok farklı malignintüründe, hastalara gözle görülür yararlar sağladığı gözlemlenmiştir. Buçalışmanın amacı, CTLA-4 ve PD-1/ PD-L1 tedavilerinin kanser tedavisindeki veimmünoterapideki yeri ile ilgili bilimsel çalışmaları incelemektir. KW - Kanser KW - immünoterapi KW - immün kontrol noktaları KW - CTLA-4 KW - PD-1 KW - PD-L1 N2 - Cancer immunotherapy aims to strengthen the humanimmune system to combat cancer and is based on the ability of the immune systemto detect the finest biochemical differences between cancer and normal cells.Immunotherapy's advantages among conventional methods are specificity to cancercells, long-term effects and contribution to healing. Tumors use inhibitoryreceptors, also known as immune control points, to inhibit anti-tumor immuneresponses. In many individuals, immunosuppression is mediated by CytotoxicT-Lymphocyte-Associated Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1)receptors. Monoclonal antibody (mAb) based therapies targeting CTLA-4 and/orPD-1 control point inhibitors have been observed to provide significantbenefits to patients of many different types of malignancies. This study aimsto examine the scientific studies on the role of CTLA-4 and PD-1 / PD-L1 incancer therapy and immunotherapy. CR - A Shenoy, J. L. (2016). Cancer cells remodel themselves and vasculature to overcome the endothelial barrier. Cancer Lett., 380(2), 534–544. https://doi.org/10.1186/s40945-017-0033-9.Using CR - Apte, S. S., & Parks, W. C. (2015). Metalloproteinases: A parade of functions in matrix biology and an outlook for the future. Matrix Biology, 44–46, 1–6. https://doi.org/10.1016/j.matbio.2015.04.005 CR - Aspeslagh, S., Solinas, C., Routy, B., Allard, B., Dupont, F. A., Buisseret, L., … Kok, M. (2018). Immuno-oncology-101: overview of major concepts and translational perspectives. Seminars in Cancer Biology, 52(February), 1–11. https://doi.org/10.1016/j.semcancer.2018.02.005 CR - Baxter, E., Windloch, K., Gannon, F., & Lee, J. S. (2014). Epigenetic regulation in cancer progression. Cell and Bioscience, 4(1). https://doi.org/10.1186/2045-3701-4-45 CR - Blomberg, O. S., Spagnuolo, L., & de Visser, K. E. (2018). Immune regulation of metastasis: mechanistic insights and therapeutic opportunities. Disease Models & Mechanisms, 11(10), dmm036236. https://doi.org/10.1242/dmm.036236 CR - Bourboulia, D., & Stetler-Stevenson, W. G. (2010). Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Seminars in Cancer Biology, 20(3), 161–168. https://doi.org/10.1016/j.semcancer.2010.05.002 CR - Boussiotis, V. A. (2016). Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. The New England Journal of Medicine, 375(18), 1767–1778. https://doi.org/10.1056/NEJMra1514296 CR - Campbell, R. (2013). Biyoloji (9th ed.). Istanbul: Palme Yayıncılık. CR - Caroline Bonnans, Jonathan Chou, Z. W. (2014). Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol., 15(12), 786–801. https://doi.org/10.1038/nrm3904.Remodelling CR - Catalano, V., Turdo, A., Di Franco, S., Dieli, F., Todaro, M., & Stassi, G. (2013). Tumor and its microenvironment: A synergistic interplay. Seminars in Cancer Biology, 23(6), 522–532. https://doi.org/10.1016/j.semcancer.2013.08.007 CR - Chiarugi, P., & Cirri, P. (2016). Metabolic exchanges within tumor microenvironment. Cancer Letters, 380(1), 272–280. https://doi.org/10.1016/j.canlet.2015.10.027 CR - Chowdhury, F., Dunn, S., Mitchell, S., Mellows, T., Ashton-Key, M., & Gray, J. C. (2015). PD-L1 and CD8 + PD1 + lymphocytes exist as targets in the pediatric tumor microenvironment for immunomodulatory therapy. OncoImmunology, 4(10), e1029701. https://doi.org/10.1080/2162402X.2015.1029701 CR - Church, S. E., & Galon, J. (2015). Tumor Microenvironment and Immunotherapy: The Whole Picture Is Better Than a Glimpse. Immunity, 43(4), 631–633. https://doi.org/10.1016/j.immuni.2015.10.004 CR - Deryugina, E. I., & Quigley, J. P. (2015). Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biology, 44–46, 94–112. https://doi.org/10.1016/j.matbio.2015.04.004 CR - Doan, M. V. W. (2017). İmmünoloji (2nd ed.). Istanbul: Nobel Tıp Kitabevleri. CR - Erdogan, B., & Webb, D. J. (2017). Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans., 45(1), 229–236. https://doi.org/10.1042/BST20160387.Cancer-associated CR - Foy, S. P., Mandl, S. J., dela Cruz, T., Cote, J. J., Gordon, E. J., Trent, E., … Rountree, R. B. (2016). Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells. Cancer Immunology, Immunotherapy, 65(5), 537–549. https://doi.org/10.1007/s00262-016-1816-7 CR - Gibney, G. T., Weiner, P. L. M., Atkins, P. M. B., & Comprehensive, L. (2016). Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol., 17(12), 542–551. https://doi.org/10.1016/S1470-2045(16)30406-5.Predictive CR - Hamanishi, J., Mandai, M., Matsumura, N., Abiko, K., Baba, T., & Konishi, I. (2016). PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. International Journal of Clinical Oncology, 21(3), 462–473. https://doi.org/10.1007/s10147-016-0959-z CR - Hirata, E., & Sahai, E. (2017). Tumor Microenvironment and Differential. Cold Spring Harb Perspect Med Doi: https://doi.org/10.1101/cshperspect.a026781 CR - Hui, L., & Chen, Y. (2015). Tumor microenvironment: Sanctuary of the devil. Cancer Letters, 368(1), 7–13. https://doi.org/10.1016/j.canlet.2015.07.039 CR - Ivey, J. W., Bonakdar, M., Kanitkar, A., Davalos, R. V., & Verbridge, S. S. (2016). Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment. Cancer Letters, 380(1), 330–339. https://doi.org/10.1016/j.canlet.2015.12.019 CR - Joosse, S. A., Gorges, T. M., & Pantel, K. (2015). Biology, detection, and clinical implications of circulating tumor cells. EMBO Molecular Medicine, 7(1), 1–11. https://doi.org/10.15252/emmm.201303698 CR - Kenny, P. A., Lee, G. Y., & Bissell, M. J. (2007). Targeting the tumor microenvironment. Frontiers in Bioscience, 12, 3468–3474. CR - Li, Y., Li, F., Jiang, F., Lv, X., Zhang, R., Lu, A., & Zhang, G. (2016). A mini-review for cancer immunotherapy: Molecular understanding of PD-1/ PD-L1 pathway & translational blockade of immune checkpoints. International Journal of Molecular Sciences, 17(7), 1–22. https://doi.org/10.3390/ijms17071151 CR - Lo, B., & Abdel-Motal, U. M. (2017, December 1). Lessons from CTLA-4 deficiency and checkpoint inhibition. Current Opinion in Immunology. Elsevier Ltd. https://doi.org/10.1016/j.coi.2017.07.014 CR - Madigan, J. M. M. (2012). Mikroorganizmaların Biyolojisi (11th ed.). Istanbul: Palme Yayıncılık. CR - Majzner, R. G., Simon, J. S., Grosso, J. F., Martinez, D., Pawel, B. R., Santi, M., … Maris, J. M. (2017). Assessment of programmed death-ligand 1 expression and tumor-associated immune cells in pediatric cancer tissues. Cancer, 123(19), 3807–3815. https://doi.org/10.1002/cncr.30724 CR - Malik, R., Lelkes, P. I., & Cukierman, E. (2015). BIOMECHANICAL and BIOCHEMICAL REMODELING of STROMAL EXTRACELLULAR MATRIX IN CANCER. Trends Biotechnol., 33(4), 230–236. https://doi.org/10.1016/j.tibtech.2015.01.004.BIOMECHANICAL CR - Marcucci, F., Rumio, C., & Corti, A. (2017). Tumor cell-associated immune checkpoint molecules – Drivers of malignancy and stemness. Biochimica et Biophysica Acta - Reviews on Cancer, 1868(2), 571–583. https://doi.org/10.1016/j.bbcan.2017.10.006 CR - Masuda, T., Hayashi, N., Iguchi, T., Ito, S., Eguchi, H., & Mimori, K. (2016). Clinical and biological significance of circulating tumor cells in cancer. Molecular Oncology, 10(3), 408–417. https://doi.org/10.1016/j.molonc.2016.01.010 CR - Melo, F. H. M. de, Oliveira, J. S., Sartorelli, V. O. B., & Montor, W. R. (2018). Cancer Chemoprevention: Classic and Epigenetic Mechanisms Inhibiting Tumorigenesis. What Have We Learned So Far? Frontiers in Oncology, 8(December), 1–15. https://doi.org/10.3389/fonc.2018.00644 CR - Meng, Y., Liang, H., Hu, J., Liu, S., Hao, X., Wong, M. S. K., … Hu, L. (2018). PD-L1 Expression Correlates With Tumor Infiltrating Lymphocytes And Response To Neoadjuvant Chemotherapy In Cervical Cancer. Journal of Cancer, 9(16), 2938–2945. https://doi.org/10.7150/jca.22532 CR - Michael W Pickup, Janna K Mouw, V. M. W. (2014). The extracellular matrix modulates the hallmarks of cancer. EMBO Reports, 15, 1243–1253. https://doi.org/10.15252/embr.201439246 CR - Missiaen, R., Mazzone, M., & Bergers, G. (2018). The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer. Seminars in Cancer Biology, 52(June), 107–116. https://doi.org/10.1016/j.semcancer.2018.06.002 CR - Multhaupt, H. A. B., Leitinger, B., Gullberg, D., & Couchman, J. R. (2016). Extracellular matrix component signaling in cancer. Advanced Drug Delivery Reviews, 97, 28–40. https://doi.org/10.1016/j.addr.2015.10.013 CR - Nallasamy, P., Chava, S., Verma, S. S., Mishra, S., Gorantla, S., Coulter, D. W., … Challagundla, K. B. (2018). PD-L1, inflammation, non-coding RNAs, and neuroblastoma: Immuno-oncology perspective. Seminars in Cancer Biology, 52(July 2017), 53–65. https://doi.org/10.1016/j.semcancer.2017.11.009 CR - Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S., & Honjo, T. (2013). A rheostat for immune responses: The unique properties of PD-1 and their advantages for clinical application. Nature Immunology, 14(12), 1212–1218. https://doi.org/10.1038/ni.2762 CR - Ott, P. A., Hodi, F. S., & Robert, C. (2013). CTLA-4 and PD-1/PD-L1 blockade: New immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clinical Cancer Research, 19(19), 5300–5309. https://doi.org/10.1158/1078-0432.CCR-13-0143 CR - Parkin, D. M., Bray, F., Ferlay, J., & Pisani, P. (2005). Global Cancer Statistics, 2002. CA: A Cancer Journal for Clinicians, 55(2), 74–108. https://doi.org/10.3322/canjclin.55.2.74 CR - Potapova T, Zhu J, L. R. (2013). Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev., 32(0). https://doi.org/10.1249/MSS.0000000000000294 CR - Rainero, E. (2016). Extracellular matrix endocytosis in controlling matrix turnover and beyond: emerging roles in cancer. Biochemical Society Transactions, 44(5), 1347–1354. https://doi.org/10.1042/bst20160159 CR - Rangel-Sosa, M. M., Aguilar-Córdova, E., & Rojas-Martínez, A. (2017, September 30). Immunotherapy and gene therapy as novel treatments for cancer. Colombia Medica (Cali, Colombia). https://doi.org/10.25100/cm.v48i3.2997 CR - Rejniak, K. A. (2016). Circulating Tumor Cells: When a Solid Tumor Meets a Fluid Microenvironment. Advances in Experimental Medicine and Biology, 936, 93–106. https://doi.org/10.1007/978-1-4614-1445-2_6 CR - Rowshanravan, B., Halliday, N., & Sansom, D. M. (2018, January 4). CTLA-4: A moving target in immunotherapy. Blood. American Society of Hematology. https://doi.org/10.1182/blood-2017-06-741033 CR - Shay, G., Lynch, C. C., & Fingleton, B. (2015). Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biology, 44–46, 200–206. https://doi.org/10.1016/j.matbio.2015.01.019 CR - Taube, J. M., Galon, J., Sholl, L. M., Rodig, S. J., Cottrell, T. R., Giraldo, N. A., … David, L. (2018). Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol., 31(2), 214–234. https://doi.org/10.1038/modpathol.2017.156.Implications CR - Van Doren, S. R. (2015). Matrix metalloproteinase interactions with collagen and elastin. Matrix Biology, 44–46(i), 224–231. https://doi.org/10.1016/j.matbio.2015.01.005 CR - Van Hooren, L., Sandin, L. C., Moskalev, I., Ellmark, P., Dimberg, A., Black, P., … Mangsbo, S. M. (2017). Local checkpoint inhibition of CTLA-4 as a monotherapy or in combination with anti-PD1 prevents the growth of murine bladder cancer. European Journal of Immunology, 47(2), 385–393. https://doi.org/10.1002/eji.201646583 CR - Walker, C., Mojares, E., & del Río Hernández, A. (2018). Role of Extracellular Matrix in Development and Cancer Progression. International Journal of Molecular Sciences (Vol. 19). https://doi.org/10.3390/ijms19103028 CR - Walker, L. S. K. (2013, September). Treg and CTLA-4: Two intertwining pathways to immune tolerance. Journal of Autoimmunity. https://doi.org/10.1016/j.jaut.2013.06.006 CR - Walker, L. S. K., & Sansom, D. M. (2015, February 1). Confusing signals: Recent progress in CTLA-4 biology. Trends in Immunology. Elsevier Ltd. https://doi.org/10.1016/j.it.2014.12.001 CR - Wang, L.-H., Wu, C.-F., Rajasekaran, N., & Shin, Y. K. (2018). Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cellular Physiology and Biochemistry, 2647–2693. https://doi.org/10.1159/000495956 CR - Weber, C. E., & Kuo, P. C. (2012). The tumor microenvironment. Surgical Oncology, 21(3), 172–177. https://doi.org/10.1016/j.suronc.2011.09.001 CR - Wu, T., & Dai, Y. (2017). Tumor microenvironment and therapeutic response. Cancer Letters, 387, 61–68. https://doi.org/10.1016/j.canlet.2016.01.043 CR - Yang, L., & Lin, P. C. (2017). Mechanisms that drive inflammatory tumor microenvironment, tumor heterogeneity, and metastatic progression. Seminars in Cancer Biology, 47(July), 185–195. https://doi.org/10.1016/j.semcancer.2017.08.001 CR - Zhang, X., Wang, C., Wang, J., Hu, Q., Langworthy, B., Ye, Y., Gu, Z. (2018). PD-1 Blockade Cellular Vesicles for Cancer Immunotherapy. Advanced Materials (Deerfield Beach, Fla.), 30(22), e1707112. https://doi.org/10.1002/adma.201707112 UR - https://doi.org/10.29048/makufebed.569375 L1 - https://dergipark.org.tr/en/download/article-file/880828 ER -