TY - JOUR T1 - New Experimental Approaches to Sand Hardening by Microbial Biocalcification TT - New Experimental Approaches to Sand Hardening by Microbial Biocalcification AU - Keskin Gündoğdu, Tuğba AU - Arıç, Alpcan AU - Deniz, İrem PY - 2020 DA - March Y2 - 2019 DO - 10.17798/bitlisfen.570061 JF - Bitlis Eren Üniversitesi Fen Bilimleri Dergisi PB - Bitlis Eren University WT - DergiPark SN - 2147-3129 SP - 390 EP - 401 VL - 9 IS - 1 LA - en AB - Inrecent years there has been a rapid growth in the construction sector in orderto meet the need for housing with the increase in population. This growth ledto the rapid development of the cement industry. In the process of increasingindustrialization, biotechnological processes are becoming more important. Themost important alternative of the cement industry is the microbialbio-calcification processes. In this process, cement-like structures areproduced by bacteria at room temperature conditions. Microbialbio-calcification processes have attracted the interest of researchersespecially in the process of self-healing in recent years as an alternative andnature-friendly solution to the cement processes that are being produced athigh temperatures. This study presents a comparative study for sand hardeningby microbial bio-calcification process. Different production surfaces was usedfor sand hardening with Sporosarcinapasteurii such as agar plates, filter paper and polyurethane supportmaterials. The effect of different CaCl2 concentrations (25 mM, 50mM and 100 mM) and sand thickness (1mm, 5mm and 10 mm) was also tested. CaCO3was determined by FTIR and measured by chemical analysis. In addition, thehardness and integrity of the samples were observed. Agar and polyurethanesupport materials were found to be more effective in terms of support materialfor sand hardening. Increased thickness reduced the hardness and 50 mM CaCl2concentration was found to be optimum for these types of processes. This studyshows the effects of sand hardness on innovative, environmentally friendly and biotechnological approach optimization. KW - Bio-calcification KW - Bio-cement KW - Agar KW - Polyurethane KW - Filter paper N2 - Sonyıllarda nüfustaki artışla birlikte barınma ihtiyacının giderilmesi için inşaatsektöründe hızlı bir büyüme olmuştur. Bu büyüme beraberinde çimentoendüstrisinde hızlı gelişimi getirmiştir. Artan endüstrileşme sürecindebiyoteknolojik süreçler her geçen gün daha fazla önem kazanmaktadır. Çimentoendüstrisinin en önemli alternatifi mikrobiyal biyokalsifikasyon prosesleridir.Bu proseste çimento benzeri yapılar oda sıcaklığı koşullarında bakterilertarafından üretilmektedirler. Mikrobiyal biyo-kalsifikasyon prosesleri yükseksıcaklıklarda üretimi gerçekleşen çimento proseslerine alternatif ve doğa dostubir çözüm olarak son yıllarda araştırmacıların ilgisini özellikle kendi kendineiyileşme sürecinde çekmiştir. Bu çalışma kapsamında mikrobiyal biyo-kalsifikasyonişlemiyle kum sertleşmesinde farklı üretim yüzeyleri karşılaştırılmıştır. Agar,filtre kağıdı ve poliüretan destek malzemeleri kullanılarak Sporosarcina pasteurii ile kumsertleştirmesi proses verimleri incelenmiştir. Farklı CaCl2konsantrasyonlarının (25 mM, 50 mM ve 100 mM) ve kum kalınlığının (1 mm, 5 mmve 10 mm) etkisi de test edilmiştir. CaCO3 varlığı FTIR testleri ilebelirlenmiş ve konsantrasyon karşılaştırmaları kimyasal yöntemlerleyapılmıştır. Ek olarak, numunelerin sertliği ve bütünlüğü de gözlenerek enuygun üretim yüzeyi karşılaştırmalı olarak incelenmiştir. Sonuç olarak agar ve poliüretan destekmalzemelerinin, kum sertleşmesinde destek malzemesi açısından daha etkiliolduğu bulunmuştur. Artan kum kalınlığının sertliği azalttığı ve 50 mM CaCl2konsantrasyonunun optimum miktar olduğu belirlenmiştir. Bu çalışma yapı sektörüve çimento sektörü açısından yenilikçi, çevre dostu ve biyoteknolojik biryöntemin optimizasyonu niteliğindedir. CR - [1]Alam, A. Naseer, and Shah A. 2015. Economical stabilization of clay for earth buildings construction in rainy and flood prone areas. Construction and Building Materials, v77 :154–159. (https://doi.org/10.1016/j.conbuildmat.2014.12.046) CR - [2]Türkiye Cumhuriyeti Ekonomi Bakanlığı İhracat Genel Müdürlüğü Kimya Ürünleri ve Özel İhracat Daire Başkanlığı. “Çimento Sektör Raporu”. Ankara, Turkey, 2016. (https://ticaret.gov.tr/data/5b87000813b8761450e18d7b/Cimento.pdf) CR - [3] Wiktor V. and Jonkers, H. M. 2011. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites, 33 (7) : 763–770. (https://doi.org/10.1016/j.cemconcomp.2011.03.012) CR - [4] Türkkan A. 2015.Çimento Fabrikalarının Sağlık Etkileri". Türk Tabipler Birliği Bursa Tabip Odası, Bursa, Turkey, 1-36. https://www.researchgate.net/profile/Alpaslan_Turkkan/publication/312627595_Cimento_Fabrikalarinin_Saglik_Etkileri/links/58872dfe4585150dde4c8903/Cimento-Fabrikalarinin-Saglik-Etkileri.pdf CR - [5] Minke G.2012.Building With Earth Design and Technology of a Sustainable Architecture. Birkhauser Basel: Walter de Gruyter. CR - [6] Fjørtoft J. and Sageie J. 2000. The natural environment as a playground for children. Landscape and Urban Planning, 48 (1) : 83–97. (https://doi.org/10.1016/S0169-2046(00)00045-1) CR - [7] Taya M. 2003. Bio-inspired design of intelligent materials. Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD), 50 (51): 54–66.https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5051/0000/Bio-inspired-design-of-intelligent-materials/10.1117/12.484425.short CR - [8] Siddique R.and Chahal N.K. 2011. Effect of ureolytic bacteria on concrete properties. Construction and Building Materials 25 (10): 3791–3801.( https://doi.org/10.1016/j.conbuildmat.2011.04.010) CR - [9] Olivera-Severo D., Wassermann G., and Carlini C.2006. Bacillus pasteurii urease shares with plant ureases the ability to induce aggregation of blood platelets. Archives of Biochemistry and Biophysics, 452 (2) : 149–155. (https://doi.org/10.1016/j.abb.2006.06.001) CR - [10] Stocks-Fischer S. , Galinat J.K., and Bang S.S. 1999 .Microbiological precipitation of CaCO3. Soil Biology and Biochemistry. 31( 11): 1563–1571. (https://doi.org/10.1016/S0038-0717(99)00082-6) CR - [11] Yoon J. H., Lee K. C., Weiss N., Kho Y. H., Kang K. H., and Park Y. H.2001. Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina,” International Journal Of Systematic And Evolutionary Microbiology, 51( 3): 1079–1086. (https://doi.org/10.1099/00207713-51-3-1079) CR - [12] Wiley W. R., Stokes J. L. 1962. Requirement of an alkaline pH and ammonia for substrate oxidation by Bacillus pasteuri. Journal of Bacteriology, 84(4):730-734.(https://jb.asm.org/content/jb/84/4/730.full.pdf) CR - [13] Chunxiang Q., Jianyun W., Ruixing R., and Liang C.2009.Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Materials Science and Engineering: C, 29(4): 1273–1280.(https://doi.org/10.1016/j.msec.2008.10.025) CR - [14] Wang J, Tittelboom K. V., Belie N. D., and Verstraete W. 2012. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and Building Materials. 26 (1): 532–540. (https://doi.org/10.1016/j.conbuildmat.2011.06.054) CR - [15] Jonkers H.M., Schlangen E. 2007. Crack repair by concrete-immobilized bacteria. In Proceedings of the first international conference on Self Healing Materials, Noordwijk aan Zee, The Netherlands, 18-20 April. (http://extras.springer.com/2007/978-1-4020-6250-6/documents/9.pdf) CR - [16] Eryürük K., Yang S., Suzuki D. ,Sakaguchi X., Akatsuka T., Tsuchiya T., and Katayama A.2015. Reducing hydraulic conductivity of porous media using CaCO3 precipitation induced by Sporosarcina pasteurii. Journal of Bioscience and Bioengineering, 119 (3): 331–336. (https://doi.org/10.1016/j.jbiosc.2014.08.009) CR - [17]. Webbook.nist.gov. (2019). Calcium carbonate (precipitated). [online] Available at: https://webbook.nist.gov/cgi/cbook.cgi?ID=C471341&Mask=80) [Accessed 1 Apr. 2019]. (https://webbook.nist.gov/cgi/cbook.cgi?ID=C471341&Mask=80) CR - [18]Sarmast M., Farpoor M.H., Sarcheshmehpoor M., Eghbal M.K..2014. Micromorphological and biocalcification effects of Sporosarcina pasteurii and Sporosarcina ureae in sandy soil columns. Journal of Agricultural Science and Technology, 16 (3): 681-693. http://mjms.modares.ac.ir/article-23-7564-en.pdf CR - [19] Bhaduri S., Debnath N., Mitra S., Liu Y., and Kumar A. 2016. Microbiologically Induced Calcite Precipitation Mediated by Sporosarcina pasteurii. Journal of Visualized Experiments. 110:54-63.(https://doi.org/10.3791/53253) CR - [20] Okwadha G.D. and Li J. 2010. Optimum conditions for microbial carbonate precipitation Chemosphere, 81 (9). 1143–1148. (https://doi.org/10.1016/j.chemosphere.2010.09.066) CR - [21] AchalV., Mukherjee A., Reddy M.S.2010. Microbial concrete: way to enhance the durability of building structures. Journal of Materials in Civil Engineering. 23, (6): 730-734. https://ascelibrary.org/doi.org/10.1061/(ASCE)MT.1943-5533.0000159 UR - https://doi.org/10.17798/bitlisfen.570061 L1 - https://dergipark.org.tr/en/download/article-file/999031 ER -