TY - JOUR T1 - SS-supplemented modules AU - Kaynar, Engin AU - Türkmen, Ergül AU - Çalışıcı, Hamza PY - 2020 DA - June Y2 - 2019 DO - 10.31801/cfsuasmas.585727 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 473 EP - 485 VL - 69 IS - 1 LA - en AB - A module M is called ss-supplemented if every submodule U of M has asupplement V in M such that U(intersection) V is semisimple. It is shown that a finitely generatedmodule M is ss-supplemented if and only if it is supplemented and Rad(M) (submodule)Soc(M). A moduleM is called strongly local if it is local and Rad(M) (submodule) Soc(M). Any direct sum of stronglylocal modules is ss-supplemented and coatomic. A ring R is semiperfect and Rad(R) (submodule)Soc(RR) if and only if every left R-module is ss-supplemented if and only if RR is a finite sum of strongly localsubmodules. KW - strongly local module KW - semisimple module KW - ss-supplemented module CR - Alizade, R., Bilhan, G. and Smith, P.F., Modules whose maximal submodules have supplements, Communications in Algebra, 29(6) (2001) 2389-2405. CR - Büyükaşık, E., Mermut, E. and Özdemir, S., Rad-supplemented modules, Rend. Sem. Mat. Univ. Padova 124 (2010) 157-177. CR - Kasch, F., Modules and Rings, London New York, 1982. CR - Lomp, C., On semilocal modules and rings, Communications in Algebra 27(4) (1999) 1921-1935. CR - Mohamed, S.H., Müller, B.J., Continuous and Discrete Modules, London Math. Soc. LNS 147 Cambridge University, 1990. CR - Sharpe, D.W., Vamos, P., Injective Modules, Cambridge University Press, Cambridge, 1972. CR - Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, 1991 CR - Zhou, D. X., Zhang, X.R., Small-Essential Submodules and Morita Duality, Southeast Asian Bulletin of Mathematics 35 (2011) 1051-1062. CR - Zöschinger, H., Moduln die in jeder Erweiterung ein Komplement haben, Mathematica Scandinavica 35 (1974) 267-287. CR - Zöschinger, H., Komplementierte moduln über Dedekindringen, Journal of Algebra 29 (1974) 42-56. UR - https://doi.org/10.31801/cfsuasmas.585727 L1 - https://dergipark.org.tr/en/download/article-file/920368 ER -