TY - JOUR T1 - On Invariants of m-Vector in Lorentzian Geometry AU - Ören, İdris PY - 2016 DA - April DO - 10.36890/iejg.591885 JF - International Electronic Journal of Geometry JO - Int. Electron. J. Geom. PB - Kazım İlarslan WT - DergiPark SN - 1307-5624 SP - 38 EP - 44 VL - 9 IS - 1 LA - en KW - Invariant KW - Lorentz group CR - [1] Duggal, Krishan L. and Bejancu, A., Lightlike submanifolds of semi-Riemannian manifolds and applications. Kluwer Academic Publishers, Dordrecht, 1996. CR - [2] Greub, W., Linear Algebra. Springer-Verlag, 1967. CR - [3] Hilbert, D., Theory of algebraic invariants. Cambridge Univ.Press, New York, 1993. CR - 4] Höfer,R., m-point invariants of real geometries. Beitrage Algebra Geom. 40(1999), 261-266. CR - [5] Khadjiev, D. and Göksal, Y.,Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space. Adv.Appl. Clifford Algebras, Online First Article (2015),1-24. CR - [6] Misiak, A. and Stasiak, E., Equivariant maps between certain G-spaces with G=O(n-1,1).Mathematica Bohemica 3(2001), 555-560. CR - [7] Naber, G. L., The Geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity. Springer- Verlag, New York, 1992. CR - [8] Ören, I˙., Invariants of points for the orthogonal group O(3, 1). Doctoral thesis, Karadeniz Technical University, 2008. CR - [9] Ören, I˙., Complete system of invariants of subspaces of Lorentzian space. Iran. J. Sci. Technol. Trans. A Sci. (2016),1-22. (in press). CR - [10] Ören, I˙., The equivalence problem for vectors in the two-dimensional Minkowski spacetime and its application to Bézier curves. J. Math. Comput. Sci. 6 (2016), no. 1, 1-21. CR - [11] Stasiak, E., Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1. Publ.Math..Debrecen 57(2000),no. 1-2, 55-69. CR - [12] Study,E., The first main theorem for orthogonal vector invariants. Ber.Sachs. Akad. 136(1897). CR - [13] Sturmfels, B.,Algorithms in invariant theory. Springer-Verlag, Wien, 2008. CR - [14] Weyl, H., The classical groups:Their invariants and representations. Princeton University Press, Princeton, NJ, 1997. UR - https://doi.org/10.36890/iejg.591885 L1 - https://dergipark.org.tr/en/download/article-file/761779 ER -