TY - JOUR T1 - ON KILLING VECTOR FIELDS ON A TANGENT BUNDLE WITH g-NATURAL METRIC AU - Ewert-krzemıenıewskı, Stanislaw PY - 2015 DA - April DO - 10.36890/iejg.592798 JF - International Electronic Journal of Geometry JO - Int. Electron. J. Geom. PB - Kazım İlarslan WT - DergiPark SN - 1307-5624 SP - 53 EP - 76 VL - 8 IS - 1 LA - en AB -    KW - Riemannian manifold KW - tangent bundle KW - g - natural metric KW - Killing vector field KW - non-degenerate metric CR - [1] Abbassi, M. T. K., M´etriques Naturelles Riemanniennes sur la Fibr´e tangent une vari´et´e Riemannienne, Editions Universitaires Europ´e´ennes, Saarbrücken, Germany, 2012. CR - [2] Abbassi, M. T. K.,g− natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds, Note di Matematica, 1 (2008), suppl. n. 1, 6-35. CR - [3] Abbassi, M. T. K., Sarih, M., Killing vector fields on tangent bundle with Cheeger-Gromoll metric, Tsukuba J. Math., 27 no. 2, (2003), 295-306. CR - [4] Abbassi, M. T. K., Sarih, Maaˆti, On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno) 41 (2005), no. 1, 71–92. CR - [5] Abbassi, M. T. K., Sarih, Maaˆti, On some hereditary properties of Riemannian g− natural metrics on tangent bundles of Riemannian manifolds, Differential Geom. Appl. 22 (2005), no. 1, 19–47. CR - [6] Belkhelfa, M., Deszcz, R., G-logowska, M., Hotlo´s, M., Kowalczyk, D., Verstraelen, L., On some type of curvature conditions, in: PDEs, Submanifolds and Affine Differential Geometry, Banach Center Publ. 57, Inst. Math., Polish Acad. Sci., 2002, 179-194. CR - [7] Degla, S., Ezin, J. P., Todjihounde, L., On g− natural metrics of constant sectional curvature on tangent bundles, Int. Electronic J. Geom., 2 (1) (2009), 74-94. CR - [8] Dombrowski, P., On the Geometry of Tangent Bundle, J. Reine Angew. Math., 210 (1962), 73-88. CR - [9] Ewert-Krzemieniewski, S., On Killing vector fields on a tangent bundle with g− natural metric, Part I. Note Mat., 34 no.2, (2014), 107-133. CR - [10] Ewert-Krzemieniewski, S., On a classification of Killing vector fields on a tangent bundle with g− natural metric, arXiv:1305:3817v1. CR - [11] Ewert-Krzemieniewski, S., Totally umbilical submanifolds in some semi-Riemannian mani- folds, Coll. Math., 119 no. 2, (2010), 269-299. CR - [12] Grycak, W., On generalized curvature tensors and symmetric (0,2)-tensors with symmetry condition imposed on the second derivative, Tensor N.S., 33 no. 2, (1979), 150-152. CR - [13] Gudmundsson, S., Kappos, E., On the Geometry of Tangent Bundles, Expo. Math., 20 (2002), 1-41. CR - [14] Kobayashi, S., Nomizu, K., Fundations of Differential Geometry, Vol. I, 1963. CR - [15] Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles, A classification. Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29. CR - [16] Nomizu, K., On the decomposition of generalized curvature tensor fields, Differential geom- etry in honor of K. Yano, Kinokuniya, Tokyo, (1972), 335-345. CR - [17] Tanno, S., Infinitesimal isometries on the tangent bundles with complete lift metric, Tensor, N.S., 28 (1974), 139-144. CR - [18] Tanno, S., Killing vectors and geodesic flow vectors on tangent bundle, J. Reine Angew. Math, 238 (1976), 162-171. CR - [19] Walker, A. G., On Ruse’s spaces of recurrent curvature, Proc. Lond. Math. Soc., 52 (1950), 36-64. CR - [20] Yano, K., Integrals Formulas in Riemannian Geometry, Marcel Dekker, Inc. New York, 1970. ara, S., Tangent and cotangent bundles, Marcel Dekker, Inc. New York, 1973. UR - https://doi.org/10.36890/iejg.592798 L1 - https://dergipark.org.tr/en/download/article-file/763274 ER -