TY - JOUR T1 - Destek Vektör Makineleri ile MODIS Verisinden Fraksiyonel Kar Örtüsünün Ilgaz Orman İşletme Müdürlüğü Bölgesinde Belirlenmesi TT - Estimation of Fractional Snow Cover from MODIS Data in Ilgaz Forest District Region by Support Vector Machines AU - Kuter, Semih AU - Çiftçi, Bora Berkay PY - 2019 DA - December DO - 10.24011/barofd.595462 JF - Bartın Orman Fakültesi Dergisi PB - Bartin University WT - DergiPark SN - 1302-0943 SP - 911 EP - 926 VL - 21 IS - 3 LA - tr AB - Bu çalışmada, Çankırı veKastamonu il sınırları içinde yer alan Ilgaz Orman İşletme Müdürlüğübölgesinde, orta çözünürlüklü görüntüleme spektroradyometresi (MODIS) verisindenetkili kar kaplı alan (EKKA) haritalaması amacıyla destek vektör makineleri(DVM) tasarımı araştırılmıştır. DVM modellerin eğitilmesinde, Mart 2000 veNisan 2016 tarihleri arasında alınan MODIS görüntülerinden elde edilen toplam10 bağımsız değişken; MODIS bant 1-7 atmosfer üstü reflektans değerleri,normalize fark kar indisi, normalize fark vejetasyon indisi ve arazi sınıfı kullanılmıştır.Referans EKKA haritaları daha yüksek mekânsal çözünürlüğe sahip ilgili Landsat7/8 görüntülerinden üretilmiştir. DVM modellerinin doğruluğu, eğitimverilerinin boyutuna ve örneklem türüne göre değerlendirilmiştir. Kerneltürünün DVM modellerinin doğruluğu üzerindeki etkisi de incelenmiştir.Sonuçlara göre, doğrusal, 2., 3. ve 4. dereceden polinomların yanı sıra radyaltemel fonksiyonu (RBF) kernelleri ile eğitilmiş tüm DVM modelleri, ilgilireferans EKKA haritaları ile yüksek korelasyon oranları vermektedir (R ≥ 0,91). Öte yandan, MODIS'in standartEKKA ürünü olan MOD10A1, ortalama R =0,77 ile biraz daha zayıf performans sergilemektedir. Eğitim aşamasındaharcanan CPU zamanlarına göre hesaplama etkinliği bakımından, RBF kernelinin, küçük,orta ve büyük boyutlu eğitim veri setleri için sırasıyla 279, 2300 ve 8457saniyelik ortalama model oluşturma süreleriyle daha üstün olduğu görülmüştür. KW - Karın uzaktan algılanması KW - MODIS KW - Landsat KW - destek vektör regresyonu N2 - This study is focused on the assessment ofsupport vector machines (SVM) in order to estimate the fractional snow cover(FSC) from coarse spatial resolution moderate resolution imagingspectroradiometer (MODIS) imagery in Ilgaz Forest District area located withinthe cities of Çankırı and Kastamonu. SVMmodel training is carried out by employing 10 predictor variables obtained fromMODIS images taken between March 2000 and April 2016, namely, MODIStop-of-atmospheric reflectance values of bands 1-7, normalized difference snowindex, normalized difference vegetation index and land cover class. Higherresolution Landsat 7/8 images are used to generate the corresponding referenceFSC maps. Accuracy of SVM models are assessed with respect to the size of thetraining data and the sampling type. The impact of the kernel type on theaccuracy of the SVM models is also investigated. According to the results, allSVM models trained with linear, 2nd, 3rd and 4thorder polynomials as well as radial basis function (RBF) kernels give highcorrelation rates with the associated reference FSC maps (R ≥ 0,91). On the other hand, MOD10A1, the standard FSC product ofMODIS, exhibits slightly poorer performance with average R = 0,77. In terms of computational efficiency with respect to CPUtimes spent during the training stage, RBF kernel is found to be superior withaverage model building times of 279, 2300 and 8457 seconds for small-, medium-and large-sized training data sets, respectively. CR - Akyürek, Z., Hall D. K., Riggs, G.A., Sensoy, A. (2010). Evaluating the utility of the ANSA blended snow cover product in the mountains of eastern Turkey. International Journal of Remote Sensing, 31(14), 3727-3744. CR - Aydinozu, D., Ibret, U., Aydin, M. (2011). Analysis of Terrain Usage in Kastamonu-Ilgaz Mountain Natural Park. International Symposium on Environmental Protection and Planning: Geographic Information Systems (GIS) and Remote Sensing (RS) Applications (ISEPP), 28-29 June 2011, İzmir - TURKEY. CR - Bruzzone, L., Melgani, F. (2005). Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data. IEEE Transactions on Geoscience and Remote Sensing, 43(1), 159-174. CR - Chen, J., Zhu, X., Vogelmann, J. E., Gao, F., Jin, S. (2011). A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sensing of Environment, 115(4): 1053-1064. CR - Chi, M., Feng, R., Bruzzone, L. (2008). Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Advances in Space Research, 41(11), 1793-1799. CR - Davis CS (2002). Statistical methods for the analysis of repeated measurements: Springer Science & Business Media. CR - Dietz, A. J., Kuenzer, C., Gessner, U., Dech, S. (2012). Remote sensing of snow – a review of available methods. International Journal of Remote Sensing, 33(13), 4094-4134. CR - Dobreva, I. D., Klein, A. G. (2011). Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance. Remote Sensing of Environment, 115(12), 3355-3366. CR - Dodge, Y. (2008). The Concise Encyclopedia of Statistics. New York: Springer. CR - Dwyer, J., Schmidt, G. (2006). The MODIS Reprojection Tool. In J. J. Qu, W. Gao, M. Kafatos, R. E. Murphy ve V. V. Salomonson (Eds.), Earth Science Satellite Remote Sensing: Vol. 2: Data, Computational Processing, and Tools (162-177). Berlin, Heidelberg: Springer Berlin Heidelberg. CR - Fisher, W. D., Camp, T. K., Krzhizhanovskaya, V. V. (2017). Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection. Journal of Computational Science, 20, 143-153. CR - Foody, G. M., Mathur, A. (2004). Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sensing of Environment, 93(1-2), 107-117. CR - Foody, G. M., Mathur, A. (2006). The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM. Remote Sensing of Environment, 103(2), 179-189. CR - Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D. K., Kelly, R., Robinson, D. A. (2012). A review of global satellite-derived snow products. Advances in Space Research, 50(8), 1007-1029. CR - Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, X. (2010). MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1), 168-182. CR - Hall, D., Foster, J., Verbyla, D., Klein, A., Benson, C. (1998). Assessment of snow-cover mapping accuracy in a variety of vegetation-cover densities in central Alaska. Remote Sensing of Environment, 66(2), 129-137. CR - Hall, D. K., Riggs, G. A., Salomonson, V. V. (1995). Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data. Remote Sensing of Environment, 54, 127-140. CR - Hall, D. K., Riggs, G. A., Salomonson, V. V. (2006). MODIS Snow and Sea Ice Products. In J. J. Qu, W. Gao, M. Kafatos, R. E. Murphy ve V. V. Salomonson (Eds.), Earth Science Satellite Remote Sensing Vol. 1: Science and Instruments (154-181). Berlin, Heidelberg: Springer. CR - Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., Bayr, K. J. (2002). MODIS snow-cover products. Remote Sensing of Environment, 83, 181-194. Haykin, S. (2009). Neural Networks and Learning Machines (3rd ed.). Upper Saddle River, NJ, USA: Pearson. CR - Kaheil, Y. H., Rosero, E., Gill, M. K., McKee, M., Bastidas, L. A. (2008). Downscaling and forecasting of evapotranspiration using a synthetic model of wavelets and support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 46(9), 2692-2707. CR - Kavzoglu, T., Colkesen, I. (2009). A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11(5), 352-359. CR - Klein, A. G., Barnett, A. C. (2003). Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000–2001 snow year. Remote Sensing of Environment, 86(2), 162-176. CR - Kumar, D., Meghwani, S. S., Thakur, M. (2016). Proximal support vector machine based hybrid prediction models for trend forecasting in financial markets. Journal of Computational Science, 17, 1-13. CR - Kumar, K. K., Shelokar, P. S. (2008). An SVM method using evolutionary information for the identification of allergenic proteins. Bioinformation, 2(6), 253. CR - Kuter, N. (2008). Evaluation of Ilgaz Mountain National Park in Terms of Forest Landscape and Aesthetics. Turkish Journal of Forestry, 1, 36-47. CR - Kuter, S., Akyurek, Z., Weber, G.W. (2018). Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines. Remote Sensing of Environment, 205, 236-252. CR - Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T. A., Stähli, M., Zappa, M. (2006). ALPINE3D: a detailed model of mountain surface processes and its application to snow hydrology. Hydrological Processes, 20(10), 2111-2128. CR - Liu, Y., Chen, Y. (2007). Face Recognition Using Total Margin-Based Adaptive Fuzzy Support Vector Machines. IEEE Transactions on Neural Networks, 18(1), 178-192. CR - Luojus, K. P., Pulliainen, J. T., Metsamaki, S. J., Hallikainen, M. T. (2007). Snow-covered area estimation using satellite radar wide-swath images. IEEE Transactions on Geoscience and Remote Sensing, 45(4), 978-989. CR - Mattera, D., Haykin, S. (1999). Support vector machines for dynamic reconstruction of a chaotic system. In S. Bernhard, J. C. B. Christopher ve J. S. Alexander (Eds.), Advances in Kernel Methods - Support Vector Learning (211-241). Cambridge, MA: MIT Press. CR - Melgani, F., Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. Geoscience and Remote Sensing, IEEE Transactions on, 42(8), 1778-1790. CR - Mountrakis, G., Im, J., Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247-259. CR - Müller, K.-R., Smola, A. J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V. (1997, October 8–10, 1997 ). Predicting time series with support vector machines. International Conference on Artificial Neural Networks - ICANN'97, Lausanne, Switzerland. CR - Painter, T. H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R. E., Dozier, J. (2009). Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sensing of Environment, 113(4), 868-879. CR - Pal, M., Mather, P. M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007-1011. CR - Piazzi, G., Tanis, C. M., Kuter, S., Simsek, B., Puca, S., Toniazzo, A., Takala, M., Akyürek, Z., Gabellani, S., Arslan, A. N. (2019). Cross-Country Assessment of H-SAF Snow Products by Sentinel-2 Imagery Validated against In-Situ Observations and Webcam Photography. Geosciences, 9(3), 129. CR - Richards, J. A., Jia, X. (2006). Remote sensing digital image analysis: An introduction (4th ed.). Germany: Springer. CR - Romanov, P., Tarpley, D., Gutman, G., Carroll, T. (2003). Mapping and monitoring of the snow cover fraction over North America. Journal of Geophysical Research, Atmospheres, 108(D16). CR - Scaramuzza, P., Micijevic, E., Chander, G. (2004). SLC-off Gap-Filled Products Gap-Fill Algorithm Methodology Phase 2 Gap-Fill Algorithm. US Geological Survey Earth Resources Observation and Science (EROS) Center. CR - Shanthi, N., Duraiswamy, K. (2010). A novel SVM-based handwritten Tamil character recognition system. Pattern Analysis and Applications, 13(2), 173-180. CR - Siljamo, N., Hyvärinen, O. (2011). New Geostationary Satellite–Based Snow-Cover Algorithm. Journal of Applied Meteorology and Climatology, 50(6), 1275-1290. CR - Smola, A. J., Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222. CR - Vapnik, V. N. (1995). The Nature of Statistical Learning Theory: Springer Heidelberg. CR - Vermote, E. F., Kotchenova, S. Y., Ray, J. P. (2011). MODIS surface reflectance user’s guide - Version 1.3. MODIS Land Surface Reflectance Science Computing Facility CR - Wolfe, R. E. (2006). MODIS Geolocation. In J. J. Qu, W. Gao, M. Kafatos, R. E. Murphy ve V. V. Salomonson (Eds.), Earth Science Satellite Remote Sensing Vol. 1: Science and Instruments (50-73). Berlin, Heidelberg: Springer. CR - Xiong, X., Isaacman, A., Barnes, W. (2006). MODIS Level-1B Products. In J. J. Qu, W. Gao, M. Kafatos, R. E. Murphy ve V. V. Salomonson (Eds.), Earth Science Satellite Remote Sensing (33-49): Springer Berlin Heidelberg. CR - Yuan, F.-C., Lee, C.-H. (2015). Using least square support vector regression with genetic algorithm to forecast beta systematic risk. Journal of Computational Science, 11, 26-33. CR - Zhang, T. (2005). Influence of the seasonal snow cover on the ground thermal regime: An overview. Reviews of Geophysics, 43(4) 1-23. CR - Zheng, S., Shi, W.-z., Liu, J., Tian, J. (2008). Remote sensing image fusion using multiscale mapped LS-SVM. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1313-1322. UR - https://doi.org/10.24011/barofd.595462 L1 - https://dergipark.org.tr/en/download/article-file/893856 ER -