TY - JOUR T1 - A New Modular Space Derived by Euler Totient Function AU - İlkhan, Merve AU - Kara, Emrah Evren AU - Usta, Fuat PY - 2019 DA - October Y2 - 2019 JF - Conference Proceedings of Science and Technology PB - Murat TOSUN WT - DergiPark SN - 2651-544X SP - 90 EP - 93 VL - 2 IS - 1 LA - en AB - In this study, we introduce the Euler Totient sequence spaces in generalized Orlicz space and we examine some topological properties of these spaces by using the Luxemburg norm. KW - Euler Totient function KW - modular space KW - Orlicz sequence space KW - Luxemburg norm CR - [1] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390. CR - [2] J. Musielak, Orlicz Spaces and Modular Space, New York, Springer Verlag, 1983. CR - [3] I. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375. CR - [4] E. Kovac, On $\phi$ convergence and $\phi$ density, Math. Slovaca 55 (2005), 329-351. CR - [5] I. Niven, H. S. Zuckerman, H. L. Montgomery, An introduction to the theory of numbers, (5th edition), Wiley, New York, 1991. CR - [6] M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544. CR - [7] H. Haryadi, S. Supama, A. Zulijanto, A generalization of Cesaro sequence spaces in the Orlicz space, J. Phys. Conf. Ser. 1008 (2018), 012020. UR - https://dergipark.org.tr/en/pub/cpost/issue//604985 L1 - https://dergipark.org.tr/en/download/article-file/843476 ER -