TY - JOUR T1 - Theoretical Studies of the Molecular Structure, Conformational and Nonlinear Optical Properties of (2-Benzyloxy-Pyrimidin-5-Yl) Boronic Acid AU - Ugurlu, Guventurk PY - 2019 DA - July JF - The Eurasia Proceedings of Science Technology Engineering and Mathematics JO - EPSTEM PB - ISRES Publishing WT - DergiPark SN - 2602-3199 SP - 101 EP - 105 VL - 6 LA - en AB - Inthis study, ab initio Hartree-Fock (HF) and Density Functional Theory (DFT),using Becke-3–Lee–Yang–Parr (B3LYP) hybrid density functional, calculationshave been performed to characterize the ground state geometrical energy, thedipole moment (μ), polarizability (α), the hyperpolarizability (β) of(2-benzyloxy-pyrimidin-5-yl) boronic acid molecule. The 1H and 13CNMR chemical shifts were calculated by GIAO approach by using B3LYP/6-311+G(2d, p) and HF/6-31G (d) level of theory. The potential energy surface of titlemolecule has been investigated as a function dihedral angles (C3-B-O1-H1 andC3-B-O2-H2). Also,  using the calculatedthe highest occupied molecular orbital energies (EHOMO) and thelowest unoccupied molecular orbital energies (ELUMO), electronicproperties of the studied molecules such as energy gap ∆Eg (ELUMO-EHOMO),chemical potential μ, electrophilic index ω, ionization potential IP, electronaffinity EA, electronegativity χ, molecular softness S, molecular hardness ηwere obtained. The dipole moment title molecule are calculated at 1.20 Debye atDFT/B3LYP/6-311++G (d, p) and 1.58 Debye at HF/6-311++G (d, p), respectively.Structural parameters of title molecules compared with the experimental data inthe literature. All computational studies have been performed with the Gaussian09W program.  KW - (2-benzyloxy-pyrimidin-5-yl) boronic acid molecule KW - Density functional theory KW - Hyperpolarizability polarizability CR - Bebeda, A.W., van Ree, T. (2015) Conformational performance and electrochemical performance of ethyleneoxy phenyl boronate electrolyte addivites. Arab. J.Sci. Eng 40 28141-2851 Becke, A. D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098–3100 Becke, A. D., 1993. Density-Functional Thermochemistry .3. The Role of Exact Exchange. J. Chem. Phys., 98 (7): 5648-5652 Clapham, K.M., Smith, A.E., Batsanov, A.S., McIntyre, L., Pountney, A ., Bryce, M.R., & Tarbit, B. (2007) 3-New pyrimidylboronic acids and functionalized heteroarylpyrimidines by Suzuki cross-coupling reactions. European Journal Of Organıc Chemıstry 34,5712-5716 Dennington, R., Keith T., Millam, J. (2009). Semichem Inc., GaussView, Version 5, Shawnee Mission KS, Durka, K., Klis, T., & Serwatowski, J. (2014) Crystal structure of (2-benzyloxypyrimidin-5-yl)boronic acid, Acta Cryst. E70, o1259–o1260 Durka, K., Katarzyna Jarzembska., K. N., Kamiński ,R., Luliński, S., Serwatowski, J.,& Woźniak, K., (2012) Structural and Energetic Landscape of Fluorinated 1,4-Phenylenediboronic Acids.Cryst.Growth Des. 12 3720-373 Francl, M.M., Pietro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., DeFrees, D.J., Pople, J.A, (1982). Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. Chem. Phys, 77 3654-3665 Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida,M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Vreven T J, Peralta J E, Ogliaro F, Bearpark M, Heyd J. J, Brothers E, Kudin N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene,M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C J, Ochterski W, Martin L R, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, 2009. Gaussian Inc., (Wallingford, CT). Krishnan, R., Binkley, J. S., Seeger, R. and Pople, J. A, (1980). Self-consistent molecular-orbital methods. 20. basis set for correlated wave-functions. J. Chem.Phys, 72: 650–654. Lee, C. T., Yang, W. T., Parr, R. G. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785-789. Liao, T. K., Podrebarac, E. G., &Cheng C.C. (1964) Boron-Substituted Pyrimidines J. Am. Chem. Soc.1869-1870 Lulisnki, S., Madura, I., Serwatowski, J., Szatyłowicz, H., & Zachara, J, (2007) A tautomeric equilibrium between functionalized 2-formylphenylboronic acids and corresponding 1,3-dihydro-1,3-dihydroxybenzo[c][2,1]oxaboroles New J. Chem., 31, 144-154 Maly, K. E., Maris, T., and Wuest,&J. D. (2006) wo-dimensional hydrogen-bonded networks in crystals of diboronic acids Ctyst Eng Comm. 8, 33-35 McLean, A.D., Chandler, G.S. (1980). Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z= 11–18. J Chem Phys, 72:5639–5648 Moller, C., Plesset, M. S. (1934). Note on an approximation treatment for many- electron systems. Phys. Rev., 46 618-622. Rassolov, V-A., Ratner, M-A., Pople ,J-A., Redfern, P-C., Curtiss ,L-A., (2001). 6–31G* basis set for third-row atoms. J Comp Chem., 22:976–984. Rettig, S.J., Trotte, C.J. (1977) Crystal and molecular structure of phenylboronic acid. Can. J. Chem. Vol. 55. 3071-3075 Saygili, N., Batsanova A. S., &Bryce, M., R. (2004)5-Pyrimidylboronic acid and 2-methoxy-5-pyrimidylboronic acid: new heteroarylpyrimidine derivatives via Suzuki cross-coupling reactions Organic & Biomolecular Chemistry Issue 6, 852-857 Sowmya, D. V., Teja, G. L., Padmaja, A., Prasad, V. K., Padmavathi, V, (2018) Green approach for the synthesis of thiophenyl pyrazoles and isoxazoles by adopting 1,3-dipolar cycloaddition methodology and their antimicrobial activity. Eur. J. Med. Chem. 143; 891-898. Wang, B., Qu, Q.T., Xia, Q., Wu, Y.P.,Gan, C.L., van Ree, T. (2008) Effects of 3,5- bis(trifluoromethyl)benzeneboronic acid as an additive on electrochemical performance of propylene carbonate based electrolytes for lithium ion batteries. Electrochim.Acta.54,816-820 UR - https://dergipark.org.tr/en/pub/epstem/issue//605348 L1 - https://dergipark.org.tr/en/download/article-file/784865 ER -