TY - JOUR T1 - The Effect of Various Carbon Nanotubes on Barley Germination TT - Farklı Karbon Nanotüplerin Arpa Çimlenmesi Üzerindeki Etkileri AU - Akdemir, Hülya AU - Seven, Merve AU - Kalay, Şaban AU - Çulha, Mustafa AU - Harvey, Andrew J. PY - 2019 DA - August JF - Experimed PB - Istanbul University WT - DergiPark SN - 2667-5846 SP - 53 EP - 59 VL - 9 IS - 2 LA - en AB - DOI: 10.26650/experimed.2019.19016Objective: Carbon nanotubes (CNT), one ofthe most important carbon-based nanomaterials, have started to be used in thefields of biology and medicine. Drug delivery, cancer treatment, biosensors,biomedical imaging and their use as composite materials in tissue engineeringare some of the biomedical applications. However, their extensive applicationsmay increase the risk of their being released into the environment. Thus, inthis study, we investigated the effects of different carbon on barley (Hordeumvulgare L. ‘Zeynelağa’) germination. Material and Method: In addition to usageof commercial single-walled carbon nanotubes (SWCNT) and multi-walled carbonnanotubes (MWCNT), carboxylated multi-walled carbon nanotubes (CCNT) have alsosynthesized carboxylated multi-walled carbon nanotubes and characterized themwith FTIR spectroscopy. Later, we investigated the effect of differentconcentrations (50 and 100 mg/L) of carbon nanotubes on the germination ofbarley seeds. Results: Compared to control groups,treatment of barley seeds with different concentrations of three carbonnanotubes had no effect on barley germination.Conclusion: It was observed that testedcarbon nanotubes have no toxic effect on barley germination. In addition tothese data, it is also important to investigate whether there is a differencein the gene expression level in order to understand the actual effect of thesematerials.Cite this article as: Akdemir H, Seven M,Kalay Ş, Çulha M, Harvey AJ. The Effect of Various Carbon Nanotubes on BarleyGermination. Experimed 2019; 9(2): 53-9. KW - Single- and multi-walled carbon nanotubes KW - carboxylated carbon nanotubes KW - barley KW - biomedical applications N2 - DOI: 10.26650/experimed.2019.19016Amaç: Karbon tabanlı nanomalzemelerin enönemlilerinden biri olan karbon nanotüpler (CNT) özellikle biyoloji ve tıpalanında kullanılmaya başlanmıştır. İlaç salımı, kanser tedavisi, biyosensör,biyomedikal görüntüleme ve doku mühendisliğinde kompozit materyaller olarakkullanımları biyomedikal uygulamalarından bazılarıdır. Ancak, yaygın olarakkullanılmaları, bu yapıların çevreye salınması riskini doğurmuştur. Bu nedenlebu çalışmada, farklı özellikteki karbon nanotüplerin arpanın (Hordeum vulgareL. ‘Zeynelağa’) çimlenmesi üzerindeki etkileri araştırılmıştır. Gereç ve Yöntem: Ticari tek tabakalı karbonnanotüp (SWCNT), çok tabakalı karbon nanotüplere (MWCNT) ek olarak, laboratuvarkoşullarında karboksillenmiş çok tabakalı karbon nanotüpler (CCNT) sentezlenmişve FTIR spektrokopisi ile karakterizasyonu gerçekleştirilmiştir. Daha sonra,farklı konsantrasyonlardaki (50 ve 100 mg/L) karbon nanotüplerin arpatohumlarının çimlenmesi üzerindeki etkisi araştırılmıştır. Bulgular: Kontrol grubuylakarşılaştırıldığında, 3 karbon nanotüpün kullanılan konsantrasyonlarda arpabitkisinin çimlenmesi üzerinde bir etki yaratmamıştır. Sonuç: Denenen farklı karbon nanotüplerinarpa çimlenmesi üzerinde doğrudan bir toksik etki yaratmadığı belirlenmiştir.Elde edilen bu verilere ek olarak, gen ekspresyonu düzeyinde bir farklılık olupolmadığının araştırılması da bu materyallerin gerçek etkisinin anlaşılmasıaçısından önemlidir. Cite this article as: Akdemir H, Seven M,Kalay Ş, Çulha M, Harvey AJ. The Effect of Various Carbon Nanotubes on BarleyGermination. Experimed 2019; 9(2): 53-9. CR - 1. Kohli P, Martin CR. Smart nanotubes for biotechnology. Curr Pharm Biotechnol 2005, 6: 35-47. [CrossRef] 2. Martin CR, Mitchell DT. Nanomaterials in analytical chemistry. Anal Chem 1998, 70: 322-7. [CrossRef] 3. Martin CR. Nanomaterials - A membrane-based synthetic approach. Science 1994, 266: 1961-6. [CrossRef] 4. Murthy N, Thng YX, Schuck S, Xu MC, Frechet JMJ. A novel strategy for encapsulation and release of proteins: hydrogels and microgels with acid-labile acetal cross-linkers. J Am Chem Soc 2002, 124: 12398-9. [CrossRef] 5. Kim SJ, Lewis B, Steiner MS, Bissa UV, Dose C, Frank JA. Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking. Contrast Media Mol Imaging 2016; 11: 55-64. [CrossRef] 6. Cruz-Acuña M, Halman JR, Afonin KA, Dobson J, Rinaldi C. Magnetic nanoparticles loaded with functional RNA nanoparticles. Nanoscale 2018. 10: 17761-70. [CrossRef] 7. Lee SB, Mitchell DT, Trofin L, Nevanen TK, Söderlund H, Martin CR. Antibody-based bio/nanotube membranes for enantiomeric drug separations. Science 2002. 296: 2198-200. [CrossRef] 8. Martinelli V, Cellot G, Toma FM, Long CS, Caldwell JH, Zentilin L, et al. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett 2012; 12: 1831-8. [CrossRef] 9. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, et al. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 2013; 5: 7965-973. [CrossRef] 10. Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC. Carbon Nanomaterials in Agriculture: A Critical Review. Front Plant Sci 2016; 7: 172. [CrossRef] 11. Wang X, Liu Z. Carbon nanotubes in biology and medicine: An overview. Chinese Sci Bull 2012; 57: 167-80. [CrossRef] 12. Daniel S, Rao T, Rao K, Rani SU, Naidu GRK, Lee HY, et al. A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sensor Actuat B-Chem 2007; 122: 672-82. [CrossRef] 13. Welsher K, Liu Z, Daranciang D, Dai H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 2008, 8: 586-590. [CrossRef] 14. Veetil JV, Ye K. Tailored carbon nanotubes for tissue engineering applications. Biotechnol Prog 2009; 25: 709-21. [CrossRef] 15. De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, et al. Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four Agricultural plants. Environ Sci Technol 2013; 47: 12539-47. [CrossRef] 16. Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, et al. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 2011, 5: 493-9. [CrossRef] 17. Pandey K, Lahiani MH, Hicks VK, Hudson MK, Green MJ, Khodakovskaya M. Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS One 2018; 13: doi: 10.1371/journal.pone.0202274. [CrossRef] 18. Stampoulis D, Sinha SK, White JC. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 2009; 43: 9473-9. [CrossRef] 19. Hao Y, Ma C, Zhang Z, Song Y, Weidong Cao W, Jing Guo J et al. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ Pollut 2018; 232: 123-36. [CrossRef] 20. Marascuilo LA, McSweeney M. Post-Hoc Multiple Comparisons in sample preparations for test of homogenesity. In: McSweeney M, Marascuilo L A (Eds) Non-Parametric and Distribution Free Methods the Social Science,. Books/Cole Publication, Belmont CA, 1977. p. 141-7. 21. Liu P, Wang X, Li H. Preparation of carboxylated carbon nanotubes/polypyrrole composite hollow microspheres via chemical oxidative interfacial polymerization and their electrochemical performance. Synthetic Metals 2013; 181: 72-8. [CrossRef] 22. Liu HK, Wang GX, Guo Z, Wang J, Konstantinov K. Nanomaterials for lithium-ion rechargeable batteries. J Nanosci Nanotechnol 2006, 6: 1-15. [CrossRef] 23. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 2012, 6: 2128-35. [CrossRef] 24. Wu Z, Mitra S. Fractionation of carboxylated carbon nanotubes and the corresponding variation in their colloidal behaviour. Environ Sci Process Impacts 2014; 16: 2295-300. [CrossRef] 25. Liu Z, Liu Y, Peng D. Carboxylation of multiwalled carbon nanotube attenuated the cytotoxicity by limiting the oxidative stress initiated cell membrane integrity damage, cell cycle arresment, and death receptor mediated apoptotic pathway. J Biomed Mater Res A 2015; 103: 2770-7. [CrossRef] 26. Lin D, Xing B. Phytotoxicity of nano particles: inhibition of seed germination and root growth. Environ Pollut 2007; 150: 243-50. [CrossRef] 27. Tripathi S, Sarkar S. 2014. Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci 2015; 5: 609-16. [CrossRef] 28. Sonkar SK, Roy M, Babar DG, Sarkar S. Water soluble carbon nano-onions from wood wool as growth promoters for gram plants. Nanoscale 2012, 4: 7670-5. [CrossRef] 29. Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV. Interaction of carbon nano horns with plants: uptake and biological effects. Carbon 2015; 81: 607-19. [CrossRef] 30. Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, et al. Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 2014; 472: 834-41. [CrossRef] UR - https://dergipark.org.tr/en/pub/experimed/issue//612765 L1 - https://dergipark.org.tr/en/download/article-file/795849 ER -