TY - JOUR T1 - Modeling of drying characteristics of pomelo (Citrus Maxima) peel TT - Pomelo (Citrus Maxima) Kabuğu Kuruma Karakteristiğinin Modellenmesi AU - Tuncer, Azim Doğuş AU - Guler, Hande Ozge AU - Usta, Hüseyin PY - 2020 DA - January Y2 - 2019 DO - 10.31202/ecjse.616497 JF - El-Cezeri JO - ECJSE PB - Tayfun UYGUNOĞLU WT - DergiPark SN - 2148-3736 SP - 198 EP - 210 VL - 7 IS - 1 LA - en AB - Drying is a technique frequently used foragricultural food products to preserve them in long time periods. In this work,drying characteristics of Pomelo fruit (Citrus Maxima) peel fordifferent drying techniques as microwave drying (MW), forced convection drying(FC) and freeze drying (FD) were determined. Experiments were conducted for twoslab thicknesses (1 cm and 0.5 cm) in albedo part of the fruit peel. Inaddition, activation energy and effective diffusivity values also color propertieswere calculated for different drying techniques in both sizes. For FC, MW, andFD, drying times were determined as 34 min, 24 min, 410 min for thin slabs and44 min, 30 min and 540 min for thick slabs, respectively. 0.5 cm thick peelshad lower moisture content in a shorter drying period and when the slicethickness was reduced, the drying rate was increased nearly by 25%. Bymathematical modelling with 11 different thin layer models, the best fittedkinetics models were found as Logarithmic, Diffusion Approach and ModifiedHenderson & Pabis models. At constant thickness, the highest effectivediffusivity values were determined for the MW drying (1.925x10-8 forthin slab, 7.295x10-8 for thick slab). As for the colormeasurements, L*, a*, b* values generally have significant differences fromfresh pomelo peel samples that the closest values to the fresh samples wereobtained from freeze drying experiment. KW - Pomelo peel KW - freeze drying N2 - Kurutma,özellikle tarım ürünlerinin uzun süreli muhafazasında yaygın olarak kullanılanbir yöntemdir. Bu çalışmada, zorlanmış taşınımla kurutma (FC), dondurularakkurutma (FD) ve mikrodalga kurutma (MW) tekniklerinin iki farklı ürünkalınlığında (1 cm ve 0,5 cm) pomelo meyvesi (Citrus Maxima) kabuğununkurutma özellikleri üzerine etkileri incelenmiştir. Ayrıca, aktivasyonenerjisi, etkin difüzivite değerleri ve renk özellikleri de her iki boyuttafarklı kurutma teknikleri için hesaplanmıştır. Kabukların kuruma süresi MC, FCve FCD yöntemlerine göre ince örnekler için sırasıyla 24 dakika, 34 dakika, 410dakika, kalın örnekler için ise sırasıyla 30 dakika, 44 dakika ve 540 dakikaolarak hesaplanmıştır. 0,5 cm kalınlığındaki örnekler daha kısa bir kurumasüresinde daha düşük nem içeriğine ulaşmış, dilim kalınlığı azaldığında kurutmahızı yaklaşık %25 artmıştır. 11 farklı ince tabaka modeli ile matematikselmodellemede en uygun kinetik modeller Logaritmik, Difüzyon Yaklaşım ve ModifiyeHenderson ve Pabis modelleri olarak belirlenmiştir. Sabit kalınlıkta en yüksek etkin difüzivitedeğerleri MW için belirlenmiştir (ince dilim için 1,925x10-8, kalındilim için 7,295 10-8).Renk ölçümleri sonucunda, L*, a*, b* değerlerinin taze pomelo kabuğunumunelerinden önemli ölçüde farklı olduğu saptanmış, taze ürüne en yakın renkdeğerleri ise dondurarak kurutma yöntemiyle elde edilmiştir. CR - [1] Yerragunta, V.; Kumaraswamy, T.; Suman, D.; Anusha, V.; Patil, P.; Samhitha, T., A review on Chalcones and its importance, Pharma.Tutor. 2013, 1(2): 54-59. CR - [2] Chavan, B. B.; Gadekar, A. S.; Mehta, P. P.; Vawhal, P. K.; Kolsure, A. K.; Chabukswar, A. R., Synthesis and Medicinal Significance of Chalcones- A Review, Asian J. Biomed. Pharma. Sci., 2016, 6(56): 01-07. CR - [3] Rusu, E.; Oncius, M., Polycondensates of 2´-(Chalcone-4-Oxy)-Ethyl-3,5-Diaminobenzoate with Some Aromatic Dicarboxylic Acids, J.M.S. Part A: Pure and Appl. Chem., 2005, 42: 1025–1036. CR - [4] Kaniappan, K.; Murugavel, S.C., Synthesis and Characterization of Photosensitive Phosphorus Based Polymers Containing ,β-Unsaturated Ketones in the Main Chain, J.M.S. Part A: Pure and Appl. Chem., 2005, 42:1589–1602. CR - [5] Selvam, P.; Babu, K.C.; Penlidis, A.; Nanjundan, Dr. S., Copolymers of 4‐(3′,4′‐ Dimethoxycinnamoyl)phenyl Acrylate and MMA: Synthesis, Characterization, Photocrosslinking Properties, and Monomer Reactivity Ratios, J.M.S. Part A: Pure and Appl. Chem., 2004, A41(7): 791–809. CR - [6] Faghihi, K.; Hajibeygi, M.; Shabanian, M., Photosensitive and Optically Active Poly(amide- imide)s Based on N,N- (pyromellitoyl)-bis-L-amino acid and Dibenzalacetone Moiety in the Main Chain: Synthesis and Characterization, J.M.S. Part A: Pure and Appl. Chem., 2010, 47:144-153. CR - [7] Rehab, A., Studies of Photoreactive Poly(Norbornene Derivatives) Bearing Chalcone Units, J.M.S. Part A: Pure and Appl. Chem., 2003, A40(7): 689-703. CR - [8] Perundevi, T.S.; Jonathan, D.R.; Kothai,S., Synthesis And Characterization of Certain Photocrosslinkable Random Copolyesters With Bischalcone Moiety, Int. J. Adv. Research, 2015, 3(3): 1147-1154.[9] Nanjundan, S.; Selvamalar, C.S.J., Synthesis, Characterization and Photocrosslinking Properties of Poly(1-(4-Methacrylamidophenyl)-1-(4-nitrophenyl)prop-1-en-3-one), J.M.S. Part A: Pure and Appl. Chem., 2006, 43: 1189-1203. CR - [10] Balaji, R.; Nanjundan,S., Studies on Photosensitive Homopolymer and Copolymers Having a Pendant Photocrosslinkable Functional Group, J. Appl. Polym. Sci., 2002, 86: 1023–1037. CR - [11] Tamilvanan, M.; Pandurangan, A.; Subramanian, K.; Reddy, B.S.R., Synthesis and characterization of mono- and di-methoxy substituted acrylate polymers containing photocrosslinkable pendant chalcone moiety, Polym. Adv. Technol. 2008, 19: 1218–1225. CR - [12] Mahy, R.; Bouammali, B.; Oulmidi, A.; Challioui, A.; Derouet, D.; Brosse, J.C., Photosensitive polymers with cinnamate units in the side position of chains: Synthesis, monomer reactivity ratios and photoreactivity, Eur. Polym. J., 2006,42: 2389–2397. CR - [13] Balajia, R.; Grande, D.; Nanjundan, S., Photoresponsive polymers having pendant chlorocinnamoyl moieties: synthesis, reactivity ratios and photochemical properties, Polymer, 2004, 45: 1089–1099. CR - [14] Rehab, A.; Salahuddin, N., (1999): Photocrosslinked polymers based on pendant extended chalcone as photoreactive moieties, Polymer, 1999, 40(9): 2197-2207. CR - [15] Crank, J. (1975). The mathematics of diffusion. Clarendon press, Oxford, UK. CR - [16] Doymaz, I. (2005). Drying characteristics and kinetics of okra. Journal of Food Engineering, 69(3), 275–279. CR - [17] Barbosa-Canovas, G.V., Vega-Mercado, H., (1996). Dehydration Mechanisms. In: Dehydration of Foods, First Edition, Chapman&Hall, New York, USA, 101-155. CR - [18] Dadali, G., Özbek, B. (2008). Microwave heat treatment of leek: drying kinetics and effective moisture diffusivity. International Journal of Food Science and Technology, 43, 1443-1451. CR - [19] Lewis, W.K. (1921). The rate of drying of solid materials. The Journal of Industrial and Engineering Chemistry, 3, 42. CR - [20] Page, G.E. (1949). Factors influencing the maximum rate of air drying shelled corn in thin-layers. MS Thesis, Purdue University, West Lafayette, USA. CR - [21] White, G.M., Bridges, T.C., Loewer, O.J., Ross, I.J. (1978). Seed coat damage in thin layer drying of soybeans as affected by drying conditions. Transactions of the ASAE, 23(1), 224-227. CR - [22] Henderson, S.M., Pabis, S. (1961). Grain drying theory I: Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6, 169-174. CR - [23] Karathanos, V.T. (1999). Determination of water content of dried fruits by drying kinetics. Journal Food Engineering, 39, 337–344. CR - [24] Chandra, P.K., Singh, R.P. (1995). Applied Numerical Methods for Food and Agricultural Engineers. CRC Press, Boca Raton, USA, 163-167. CR - [25] Henderson, S.M., (1974). Progress in developing the thin layer drying equation. Transaction of The ASAE, 17, 1167-1172. CR - [26] Sharaf-Eldeen, Y.I., Blaisdell, J.L., Hamdy, M.Y. (1980). A model for ear corn drying. Transactions of the ASAE, 23, 1261-1271. CR - [27] Kaseem, A.S. (1998). Comparative studies on thin layer drying models for wheat. In: 13th International Congress on Agricultural Engineering, Morocco. CR - [28] Verma, L.R., Bucklin, R.A., Ednan, J.B., Wratten, F.T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28, 296–301. CR - [29] Panchariya P.C., Popovic, D., Sharma, A.L. (2002). Thin-layer modeling of black tea drying process. Journal of Food Engineering, 52, 349- 357. CR - [30] Rafiee, S., Sharifi, M., Keyhani, A., Omid, M., Jafari, A., Mohtasebi, S.S., Mobli, H. (2010). Modeling effective moisture diffusivity of orange slice (Thompson Cv.). International Journal of Food Properties, 13(1), 32-40. CR - [31]Tulek, Y. (2011). Drying kinetics of oyster mushroom (Pleurotus ostreatus) in a convective hot air dryer. Journal of Agricultural Science and Technology, 13, 655-664. CR - [32] Ertekin, C., Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer Drying model. Journal of Food Engineering, 63, 349-359. CR - [33] Wang, J., Xi, Y.S. (2005). Drying characteristics and drying quality of carrot using a two-stage microwave process. Journal of Food Engineering, 68, 505-511. CR - [34] Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44, 71-78. CR - [35] Minaei, S., Motevali, A., Najafi, G., Mousavi Seyedi, S.R. (2012). Influence of drying methods on activation energy, effective moisture diffusion and drying rate of pomegranate arils ('Punica granatum'). Australian Journal of Crop Science, 6(4), 584. CR - [36] Motevali, A., Abbaszadeh, A., Minaei, S., Khoshtaghaza, M.H., Ghobadian, B. (2012). Effective Moisture Diffusivity, Activation Energy and Energy Consumption in Thin-layer Drying of Jujube (Zizyphus jujube Mill). Journal of Agricultural Science and Technology, 14, 523-532. CR - [37] Taheri-Garavand, A., Rafiee, S., Keyhani, A. (2011). Study on effective moisture diffusivity, activation energy and mathematical modeling of thin layer drying kinetics of bell pepper. Australian Journal of Crop Science, 5(2), 128. CR - [38] Toğrul, İ. T., Pehlivan, D. (2004). Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65(3), 413-425. CR - [39] Wang, Z., Sun, J., Chen, F., Liao, X., Hu, X. (2007). Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air predrying. Journal of Food Engineering, 80, 536-544. CR - [40] Darvishi, H. (2012). Energy consumption and mathematical modeling of microwave drying of potato slices. Agricultural Engineering International: CIGR, 14(1),94-102. CR - [41] Garau, M.C., Simal, S., Femenia, A., Rossello, C. (2006). Drying of orange skin: drying kinetics modeling and functional properties. Journal of Food Engineering, 75, 288–295. CR - [42] Kutlu, N., İşci, A. (2016). Effect of Different Drying Methods on Drying Characteristics of Eggplant Slices and Mathematical Modeling of Drying Processes. Academic Food Journal, 14(1), 21-27. CR - [43] Rahman, N.F.A., Shamsudin, R., Ismail, A., Shah, N.N.A.K. (2016). Effects of post-drying methods on pomelo fruit peels. Food Science and Biotechnology, 25(1), 85-90. UR - https://doi.org/10.31202/ecjse.616497 L1 - https://dergipark.org.tr/en/download/article-file/949482 ER -