TY - JOUR T1 - BLOW UP OF SOLUTIONS FOR A NONLINEAR VISCOELASTIC WAVE EQUATIONS WITH VARIABLE EXPONENTS AU - Pişkin, Erhan PY - 2019 DA - December Y2 - 2019 DO - 10.23884/mejs.2019.5.2.05 JF - Middle East Journal of Science JO - MEJS PB - Bilal GÜMÜŞ WT - DergiPark SN - 2618-6136 SP - 134 EP - 145 VL - 5 IS - 2 LA - en AB - The aim of this work is to study the blow up of solutions for the viscoelastic wave equation with variable exponents in a bounded domain. Our result extends the one in <cite>Messaoudi1</cite> to problems with variable exponent nonlinearities. KW - Blow up KW - Viscoelastic wave equation KW - Variable exponent CR - Ball J. M., "Remarks on blow-up and nonexistence theorems for nonlinear evolution equations", Quart. J. Math. Oxford Ser., 28, 473-486, 1977. CR - Cavalcanti M.M., Domingos Cavalcanti V.N., Ferreira J., "Existence and uniform decay for nonlinear viscoelastic equation with strong damping", Math. Methods Appl. Sci., 24, 1043-1053, 2001. CR - Chen Y., Levine S., Rao M., "Variable Exponent, Linear Growth Functionals in Image Restoration", SIAM Journal on Applied Mathematics, 66, 1383-1406, 2006. CR - Diening L., Hasto P., Harjulehto P., Ruzicka M.M., "Lebesgue and Sobolev Spaces with Variable Exponents", Springer-Verlag, 2011. Fan X.L., Shen J.S., Zhao D., "Sobolev embedding theorems for spaces W^{k,p(x)}(Ω)", J. Math. Anal. Appl., 263, 749-760, 2001. CR - Georgiev V., Todorova G., "Existence of a solution of the wave equation with nonlinear damping and source term", J. Differ. Equations, 109, 295-308, 1994. CR - Kalantarov V.K., Ladyzhenskaya O.A., "The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types", J. Soviet Math., 10, 53-70, 1978. CR - Kovacik O., Rakosnik J., "On spaces L^{p(x)}(Ω), and W^{k,p(x)}(Ω)", Czechoslovak Mathematical Journal, 41, 592-618, 1991. CR - Levine H.A., "Instability and nonexistence of global solutions of nonlinear wave equations of the form Pu_{tt}=Au+F(u)", Trans. Amer. Math. Soc., 192, 1-21, 1974. CR - Messaoudi S.A., "Blow up and global existence in a nonlinear viscoelastic wave equation", Math. Nachr., 260 58-66, 2003. CR - Messaoudi S.A., "Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation", J. Math. Anal. Appl., 320, 902-915, 2006. CR - Messaoudi S.A., Talahmeh A.A., Al-Shail J.H., "Nonlinear damped wave equation: Existence and blow-up", Comp. Math. Appl., 74, 3024-3041, 2017. CR - Pişkin E., "Sobolev Spaces", Seçkin Publishing, 2017. (in Turkish). CR - Ruzicka M., "Electrorheological Fluids: Modeling and Mathematical Theory", Lecture Notes in Mathematics, Springer, 2000. CR - Song H., "Blow up arbitrarily positive inital energy solutions for a viscoelastic wave equation", Nonlinear Anal.: Real Worl Appl., 26, 306-314, 2015. CR - Park S.H., Lee M.J., Kang J.R., "Blow up results for viscoelastic wave equations with weak damping", Appl. Math. Lett., 80, 20-26, 2018. UR - https://doi.org/10.23884/mejs.2019.5.2.05 L1 - https://dergipark.org.tr/en/download/article-file/906544 ER -