TY - JOUR T1 - AKILLI FABRİKALARDAKİ OTONOM TAŞIYICILAR İÇİN BULANIK MANTIK TABANLI ANOMALİ TESPİTİ TT - FUZZY LOGIC BASED ANOMALY DETECTION FOR AUTONOMOUS TRANSPORT VEHICLES IN SMART FACTORIES AU - Örnek, Özlem AU - Gülbandılar, Eyyüp AU - Yazıcı, Ahmet PY - 2020 DA - April Y2 - 2020 DO - 10.31796/ogummf.619239 JF - Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi JO - ESOGÜ Müh Mim Fak Derg PB - Eskişehir Osmangazi University WT - DergiPark SN - 2630-5712 SP - 53 EP - 61 VL - 28 IS - 1 LA - tr AB - Dijital dönüşüm sanayidekibirçok sürecin veri odaklı yeni yaklaşımlarla ele alınmasını gereklikılmaktadır. Bu bağlamda Endüstri 4.0 ile beraber akıllı fabrikalarda da önemlidijital dönüşümün olması beklenmektedir. Akıllı fabrikalardaki dijital dönüşümekatkı sağlayacak en önemli teknolojilerden bir tanesi de otonom taşıyıcı araç(OTA)’lardır. OTA’ların fabrikaiçerisindeki görevlerini verimli bir şeklide gerçekleştirmeleri ve beklenmedikbir problem veya aksama olduğunda insan müdahalesi olmadan bu durumun veriüzerinden tespiti önemlidir. Bu çalışmada, Bulanık mantık ile OTA’ların fabrikaiçerisindeki trafik ağında oluşabilecek beklenmedik durma, yavaşlama vb.kaynaklı anormal durumlar tespit edilmektedir. Yapılan testlerde önerilenyöntemin %84,62 başarıyla sonuç verdiği gözlenmiştir. KW - Anomali Tespiti KW - Bulanık Mantık KW - Akıllı Fabrika KW - Otonom Araç N2 - Digitaltransformation requires new data-oriented approaches in industry. In thiscontext, it is expected that there will be significant digital transformationin the smart factories with Industry 4.0. One of the most importanttechnologies that will contribute to digital transformation in smart factoriesis the autonomous transport vehicle (ATV). ATVs are expected to perform theirtasks in the factory in an efficient manner. And it is also expected to detect anunexpected problem or any failure via the data without human intervention. Thisstudy aimed determining abnormal conditions of traffic network such asunexpected stop and deceleration by using fuzzy logic in the factory. The performedtests show that the proposed method results success (84.62%). CR - Chandola, V., Banerjee, A., & Kumar, V. (2007). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 15. CR - Dardor, M., Chlyah, M., & Boumhidi, J. (2018, April). Incident detection in signalized urban roads based on genetic algorithm and support vector machine. In 2018 International Conference on Intelligent Systems and Computer Vision (ISCV) (pp. 1-6). IEEE. CR - Dogru, N., & Subasi, A. (2018, February). Traffic accident detection using random forest classifier. In 2018 15th Learning and Technology Conference (L&T) (pp. 40-45). IEEE. CR - Ki, Y. K., Heo, N. W., Choi, J. W., Ahn, G. H., & Park, K. S. (2018, January). An incident detection algorithm using artificial neural networks and traffic information. In 2018 Cybernetics & Informatics (K&I) (pp. 1-5). IEEE. CR - La-inchua, J., Chivapreecha, S., & Thajchayapong, S. (2013, May). A new system for traffic incident detection using fuzzy logic and majority voting. In 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (pp. 1-5). IEEE. CR - Li, Y., Guo, T., Xia, R., & Xie, W. (2018). Road traffic anomaly detection based on fuzzy theory. IEEE Access, 6, 40281-40288. CR - Liu, Q., Lu, J., Chen, S., & Zhao, K. (2014). Multiple Naïve bayes classifiers ensemble for traffic incident detection. Mathematical Problems in Engineering, 2014. CR - Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies, 7(1), 1-13. CR - Mendel, J. M. (1995). Fuzzy logic systems for engineering: a tutorial. Proceedings of the IEEE, 83(3), 345-377. CR - Nikolaev, A. B., & Sapego, Y. S. (2016). IMPLEMENTATION OF INCIDENT DETECTION ALGORITHM BASED ON FUZZY LOGIC IN PTV VISSIM. International Journal of Advanced Studies, 6(4), 37-45. CR - Nikolaev, A. B., Sapego, Y. S., Jakubovich, A. N., Berner, L. I., & Stroganov, V. Y. (2016). Fuzzy Algorithm for the Detection of Incidents in the Transport System. International Journal of Environmental and Science Education, 11(16), 9039-9059. CR - ÖRNEK, Ö, VATAN, S, SARIOĞLU, S, ve YAZICI, A. (2018). Trafik Ağlarında Anomali Tespiti. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 26 (3), 132-138. DOI: 10.31796/ogummf.440285. CR - Örnek, Ö., Vatan, S., Sarıoğlu, S., ve Yazıcı, A. (2018). Anomaly Detection for Autonomous Transfer Vehicles in Smart Factories. CEIT 2018 6th International Conference on Control Engineering and Information Technology 25-27 October, IEEE, pp. 756-760. CR - Parkany, E., & Xie, C. (2005). A complete review of incident detection algorithms & their deployment: what works and what doesn't (No. NETCR 37, NETC 00-7). CR - Rossi, R., Gastaldi, M., Gecchele, G., & Barbaro, V. (2015). Fuzzy logic-based incident detection system using loop detectors data. Transportation Research Procedia, 10, 266-275. CR - Thaika, M., Tasneeyapant, S., & Cheamanunkul, S. (2018). A Fast, Scalable, Unsupervised Approach to Real-time Traffic Incident Detection. 15th International Joint Conference on Computer Science and Software Engineering (JCSSE), 1-6. 10.1109/JCSSE.2018.8457338. CR - Weil, R., Garcia-Ortiz, A., & Wootton, J. (1998, May). Detection of traffic anomalies using fuzzy logic based techniques. In 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98CH36228) (Vol. 2, pp. 1176-1181). CR - Zadeh, L. A. (1988, April). Fuzzy logic. In Computer, vol. 21, no. 4, pp. 83-93. IEEE. doi: 10.1109/2.53 UR - https://doi.org/10.31796/ogummf.619239 L1 - https://dergipark.org.tr/en/download/article-file/1031703 ER -