@article{article_628755, title={Annihilators of power values of b-generalized derivations in prime rings}, journal={Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics}, volume={69}, pages={1278–1284}, year={2020}, DOI={10.31801/cfsuasmas.628755}, author={Baydar Yarbil, Nihan}, keywords={Prime ring,generalized polynomial identity}, abstract={Let $R$ be a prime ring with extended centroid $C$ and maximal left ring of quotients $Q_{ml}(R)$.  For  a nonzero element $b\in R$ let $F:R\rightarrow R$ be a right generalized $b$-derivation associated with the map $d$ of $R$. Suppose that  $s\left(F(x)\right)^n=0$ for all $x\in R$ where $s$ is a nonzero element in $R$ and $n\geq 1$ is a fixed positive integer. Then  there exist some $c\in Q{ml}(R)$ and $\beta \in C$ such that $d(x)=ad_c(x)$, $F(x)=(b+\beta)xb$ for all $x\in R$ and either $s(c+\beta)=0$ or $b(c+\beta)=0$.}, number={2}, publisher={Ankara University}