TY - JOUR T1 - Soft topology in ideal topological spaces AU - Al-omari, Ahmad PY - 2019 DA - October JF - Hacettepe Journal of Mathematics and Statistics PB - Hacettepe University WT - DergiPark SN - 2651-477X SP - 1277 EP - 1285 VL - 48 IS - 5 LA - en AB - In this paper, $(X, \tau, E)$ denotes a soft topological space and $\overline{\mathcal{I}}$ a soft ideal over $X$ with the same set of parameters $E$. We define an operator $(F, E)^{\theta}(\overline{\mathcal{I}}, \tau)$ called the $\theta$-local function of $(F, E)$ with respect to $\overline{\mathcal{I}}$ and $\tau$. Also, we investigate some properties of this operator. Moreover, by using the operator $(F, E)^{\theta}(\overline{\mathcal{I}}, \tau)$, we introduce another soft operator to obtain soft topology and show that $\tau_{\theta}\subseteq\sigma\subseteq\sigma_{0}$. KW - soft topological KW - ideal KW - $\theta$-local function KW - $\theta$-compatibility CR - [1] M.I. Ali, F. Feng, X. Liu, W.K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57, 1547–1553, 2009. CR - [2] A. Aygünoğlu and H. Aygün, Some note on soft topolgical spaces, Neural Comput. Appl. 21 (1), 113–119, 2012. CR - [3] A. Kandil, O.A.E. Tantawy, S.A. El-Sheikh and A.M. Abd El-latif, Soft ideal theory, Soft local function and generated soft topological spaces, Appl. Math. Inf. Sci. 8 (4), 1595–1603, 2014. CR - [4] P.K. Maji, R. Biswas and A.R. Roy, Soft set theory, Comput. Math. Appl. 45, 555– 562, 2003. CR - [5] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (4-5), 19–31, 1999. CR - [6] M. Shabir and M. Naz, On soft topolgical spaces, Comput. Math. Appl. 61, 1786–1799, 2011. CR - [7] I. Zorlutuna, M. Akdağ, W.K. Min and S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform. 3, 171–185, 2012. UR - https://dergipark.org.tr/en/pub/hujms/article/629820 L1 - https://dergipark.org.tr/en/download/article-file/824604 ER -