TY - JOUR T1 - Exponential growth of solutions for a parabolic system AU - Ekinci, Fatma AU - Pişkin, Erhan PY - 2019 DA - December JF - Journal of Engineering and Technology JO - JETECH PB - Batman University WT - DergiPark SN - 2619-9483 SP - 29 EP - 34 VL - 3 IS - 2 LA - en AB - In this paper, we investigated the initial boundary problem of a class of doubly nonlinear parabolicsystems. We prove exponential growth of solution with negative initial energy. KW - Exponential growth CR - 1. Pang J, Qiao B. Blow-up of solution for initial boundary value problem of reaction diffusion equations. Journal of Advances in Mathematics 2015;10(1):3138-3144. CR - 2.Bebernes J, Eberly D. Mathematical Problems from Combustion Theory. Applied Mathematical Science. Springer-Verlag: Berlin; 1989. CR - 3. Pao CV. Nonlinear Parabolic and Elliptic Equations. Plenum, New York; 1992. CR - 4. Escerh J, Yin Z. Stable equilibra to parabolic systems in unbounded domains. Journal of Nonlinear Mathematical Physics 2004;11(2):243-255. CR - 5. Zhou H. Blow-up rates for semilinear reaction-diffusion systems. Journal of Differential Equations 2014;257 :843-867. CR - 6. Escher J, Yin Z. On the stability of equilibria to weakly coupled parabolic systems in unbounded domains. Nonlinear Analysis 2005;60:1065-1084. CR - 7. Escobedo M, Herrero MA. A semilinear reaction diffusion system in a bounded domain. Annali di Matematica Pura ed Applicata 1993;165:315–336. CR - 8. Escobedo M, Levine HA. Critical blowup and global existence numbers for a weakly coupled system of reaction-diffusion equations. Archive for Rational Mechanics and Analysis 1995;129:47-100. CR - 9. Alaa N. Global existence for reaction-diffusion systems with mass control and critical growth with respect to the gradient. Journal of Mathematical Analysis and Applications 2001;253:532-557. CR - 10. Wang RN, Tang ZW. Global existence and asymptotic stability of equilibria to reaction-diffusion systems. Journal of Physics A: Mathematical and Theoretical 2009;42, Article ID 235205. CR - 11. Yadav OP, Jiwari R. A finite element approach for analysis and computational modelling of coupled reaction diffusion models. Numerical Methods for Partial Differential Equations 2018;1-21. UR - https://dergipark.org.tr/en/pub/jetech/issue//634247 L1 - https://dergipark.org.tr/en/download/article-file/890624 ER -