TY - JOUR T1 - Localization and Point Cloud Based 3D Mapping with Autonomous Robots TT - Otonom Robotlarla Lokalizasyon ve Nokta Bulutu Tabanlı 3B Haritalama AU - Açıkel, Selya AU - Gökçen, Ahmet PY - 2019 DA - October DO - 10.31590/ejosat.636389 JF - Avrupa Bilim ve Teknoloji Dergisi JO - EJOSAT PB - Osman SAĞDIÇ WT - DergiPark SN - 2148-2683 SP - 82 EP - 92 LA - en AB - In this study, localizationand environment mapping application is aimed with an autonomous robot. A new algorithmis presented to scan a larger area, to produce faster and more accurateresults. The mapping process is intended not to be affected by environmentalmovements. It can be used in military areas to gain manpower in the mine areaor to model the environment in virtual reality applications. In autonomousrobot design, the horizontal and vertical angle values of the Lidar Lite V3 areprovided by two servo motors. A four-wheeled car model was used. Ultrasonicsensors are placed on the front, right and left surfaces of the robot,Raspberry Pi 3 and Pi Camera was placed on top. It is seen that the movingaverage filter removes the noise generated on the map. The Lidar Lite V3 wasable to take measurements at longer distances. Noise generation is prevented bymotion detection algorithm. It can be used in interior space mapping,environment modeling, virtual reality applications, military areas, miningsector and graphic applications. In outdoor mapping, it can be used to create amap of an area of 40 meters in diameter. The mapping process was performed asclose to the actual values by using the moving average filter and the LidarLite V3. The mapping process with the motion detection system is paused andactual position data are obtained using GPS.  KW - Mapping KW - localization KW - SLAM KW - Moving Average Filter KW - Lidar N2 - Bu çalışmada otonom bir robot ile çevre haritalaması ve konum takibiyapılması amaçlanmıştır. Daha geniş bir alanın taranması, daha hızlı ve doğrusonuçların üretilmesi amacıyla yeni bir algoritma sunulmuştur. Haritalamaişleminin ortam hareketlerinden etkilenmemesi amaçlanmıştır. Askeri alanlarda,maden alanında insan gücünden kazanç sağlamak veya sanal gerçeklikuygulamalarında ortam modeli çıkarmak amacıyla kullanılabilmektedir. Otonomrobot tasarımında iki adet servo motor ile Lidar Lite V3’e yatay ve düşey açıdeğerleri verilmiştir. Dört tekerlekli bir araba modeli kullanılmıştır. Robotunön, sağ ve sol yüzeylerine birer ultrasonik sensör ve üzerine Raspberry Pi 3yerleştirilmiştir. Hareketli ortalamalar filtresinin haritada oluşangürültüleri giderdiği görülmüştür. Lidar Lite V3 ile daha uzak mesafelerdenölçüm alınabilmiştir. Hareket algılama algoritması sayesinde gürültü oluşumuengellenmiştir. Pratikte iç mekan haritalamada, ortam modellemede, sanalgerçeklik uygulamalarında, askeri alanlarda, maden sektöründe ve grafikuygulamalarında kullanılabilir. Dış mekan haritalamada ise kırk metre çapındabir alanın haritasını oluşturmakta kullanılabilir. Haritalama işlemi, hareketliortalamalar filtresi ve Lidar Lite V3 kullanılarak gerçek değerlere en yakınşekilde gerçekleştirilmiştir. Hareket algılama sistemi ile haritalama işlemiduraklatılmıştır ve GPS kullanılarak gerçek konum verileri elde edilmiştir. CR - Açıkel, S. & Gökçen A. (2018). Two-dimensional environmental mapping and route tracking by using lidar in otonom robots. IV. INES Internatıonal Academic Research Congress (INES - 2018), Antalya. CR - Altuntaş, N., Uslu, E., Çakmak, F., Amasyalı, M. F., & Yavuz, S. (2017, October). Comparison of 3-dimensional SLAM systems: RTAB-Map vs. Kintinuous. In Computer Science and Engineering (UBMK), 2017 International Conference on (pp. 99-103). IEEE. CR - Ankışhan, H., & Efe, M. (2010). Kalman filter approaches for simultaneous localization and mapping. DÜMF Engineering Journal, 1(1), 13-20. CR - Bradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV library. "O'Reilly Media, Inc.",(pp. 265-271) CR - Carlone, L., Tron, R., Daniilidis, K., & Dellaert, F. (2015, May). Initialization techniques for 3D SLAM: a survey on rotation estimation and its use in pose graph optimization. In Robotics and Automation (ICRA), 2015 IEEE International Conference on (pp. 4597-4604). IEEE. CR - Dissanayake, M. G., Newman, P., Durrant-Whyte, H. F., Clark, S., & Csorba, M. (2000). An experimental and theoretical investigation into simultaneous localisation and map building. In Experimental robotics VI (pp. 265-274). Springer, London. CR - Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: part I. IEEE robotics & automation magazine, 13(2), 99-110. Fowler, R. A. (2000). The lowdown on LIDAR. Earth Observation Magazine, 9(3), 5. CR - Golestan, S., Ramezani, M., Guerrero, J. M., Freijedo, F. D., & Monfared, M. (2013). Moving average filter based phase-locked loops: Performance analysis and design guidelines. IEEE Transactions on Power Electronics, 29(6), 2750-2763. CR - Graff, K. F. (1981). A history of ultrasonics. In Physical acoustics (Vol. 15, pp. 1-97). Academic Press. Hosseinzadeh, M., Li, K., Latif, Y., & Reid, I. (2018). Real-Time Monocular Object-Model Aware Sparse SLAM. arXiv preprint arXiv:1809.09149. CR - Jury, E. I. (1964). Theory and Application of the z-Transform Method (pp. 176-179). CR - Kurt, Z. (2007). Development of intelligent algorithms for simultaneous positioning and mapping. (Doctoral dissertation, Yıldız Technical University, Institute of Science and Technology, Istanbul). CR - Lee, K., Ryu, S. H., Nam, C., & Doh, N. L. (2018). A practical 2D/3D SLAM using directional patterns of an indoor structure. Intelligent Service Robotics, 11(1), 1-24. CR - Maulana, I., Rusdinar, A., & Priramadhi, R. A. (2018). Application of Lidar for Mapping and Navigation in Closed Environments. eProceedings of Engineering, 5(1). CR - Ramli, M. F. B., Shamsudin, S. S., & Legowo, A. (2017). Obstacle Detection Technique Using Multi Sensor Integration for Small Unmanned Aerial Vehicle. Indonesian Journal of Electrical Engineering and Computer Science, 8(2), 441-449. CR - Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M., & Beetz, M. (2008). Towards 3D point cloud based object maps for household environments. Robotics and Autonomous Systems, 56(11), 927-941. CR - Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2010). Robotics: modelling, planning and control. Springer Science & Business Media. CR - Thrun, S. (2002). Robotic mapping: A survey. Exploring artificial intelligence in the new millennium, 1(1-35), 1. CR - Üstün, A. (1996). Datum conversions. (Master Thesis, Yıldız Technical University, Institute of Science and Technology, Istanbul). UR - https://doi.org/10.31590/ejosat.636389 L1 - https://dergipark.org.tr/en/download/article-file/836799 ER -