@article{article_638575, title={Effectiveness of Turkish Derivatives Market and Forecasting Comparative Prices for the Contracts}, journal={Ege Academic Review}, volume={19}, pages={469–485}, year={2019}, DOI={10.21121/eab.638575}, author={Taş, Taner and Selim, Sibel}, keywords={Derivatives Markets,Efficient Market Hypothesis,Unit Root Test,ARIMA Models,ARCH/ GARCH Models,Artificial Neural Networks}, abstract={<p>Derivative markets developed for eliminating  <span style="font-size: 0.9em;">uncertainty and risk arising from financial markets  </span> <span style="font-size: 0.9em;">can make predictions about the future by using  </span> <span style="font-size: 0.9em;">past price movements in case the market is not  </span> <span style="font-size: 0.9em;">effective. In this context, in this study, firstly, the  </span> <span style="font-size: 0.9em;">effectiveness of the Turkish Derivatives Market was  </span> <span style="font-size: 0.9em;">tested by applying the Augmented Dickey-Fuller  </span> <span style="font-size: 0.9em;">(ADF), Phillips-Perron (PP) and Kwiatkowski et al.  </span> <span style="font-size: 0.9em;">(KPSS) linear unit root tests and Kapetanios et al.  </span> <span style="font-size: 0.9em;">(KSS) nonlinear unit root test. As a result of all unit  </span> <span style="font-size: 0.9em;">root tests, it was concluded that the series did not  </span> <span style="font-size: 0.9em;">show random walk, so that the market was not  </span> <span style="font-size: 0.9em;">effective. Then, the method that shows the highest  </span> <span style="font-size: 0.9em;">performance is tried to be determined when  </span> <span style="font-size: 0.9em;">forecasting the end of day settlement price of the  </span> <span style="font-size: 0.9em;">TL/Dollar and Bist-30 contracts which is traded in the  </span> <span style="font-size: 0.9em;">Derivatives Market. For this purpose, the forecasting  </span> <span style="font-size: 0.9em;">results produced by the time series analysis methods  </span> <span style="font-size: 0.9em;">are compared with the results of the artificial neural  </span> <span style="font-size: 0.9em;">network model which has the best performance by  </span> <span style="font-size: 0.9em;">employing different architectures, layer numbers,  </span> <span style="font-size: 0.9em;">cell numbers in layers, activation functions and  </span> <span style="font-size: 0.9em;">learning methods using the data which is provided  </span> <span style="font-size: 0.9em;">from Borsa Istanbul Inc. and covering the dates  </span> <span style="font-size: 0.9em;">between 04.02.2005 and 31.12.2015.According to  </span> <span style="font-size: 0.9em;">the results of analysis, ARMA (4,4) model performed  </span> <span style="font-size: 0.9em;">better than RBF-1-BL artificial neural network  </span> <span style="font-size: 0.9em;">model and ARCH (1) model for TL/Dollar contract  </span> <span style="font-size: 0.9em;">series. For the Bist-30 contract series, TDNN-1-B-L  </span> <span style="font-size: 0.9em;">artificial neural network model has higher predictive  </span> <span style="font-size: 0.9em;">performance than ARMA (4.5) and ARCH (1) models. </span> </p>}, number={4}, publisher={Ege University}