TY - JOUR T1 - Relative subcopure-injective modules AU - Alagöz, Yusuf PY - 2020 DA - June Y2 - 2020 DO - 10.31801/cfsuasmas.640331 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 832 EP - 846 VL - 69 IS - 1 LA - en AB - In this paper, copure-injective modules is examined from an alternative perspective.For two modules A and B, A is called B-subcopure-injective if for everycopure monomorphism f : B → C and homomorphism g : B→ A, there exists ahomomorphism h : C→ A such that hf=g. For a module A, thesubcopure-injectivity domain of A is defined to be the collection of allmodules B such that A is B-subcopure-injective. Basic properties of the notion of subcopure-injectivity are investigated. We obtaincharacterizations for various types of rings and modules, including copure-injective modules, right CDS rings and right V-rings in terms of subcopure-injectivity domains. Sincesubcopure-injectivity domains clearly contains all copure-injective modules,studying the notion of modules which are subcopure-injective only with respectto the class of copure-injective modules is reasonable. We refer to thesemodules as sc-indigent. We studied the properties of subcopure-injectivitydomains and of sc-indigent modules and investigated over some certain rings. KW - Copure-injective modules KW - subcopure-injectivity domains KW - sc-indigent modules KW - CDS rings CR - Anderson, F. W., Fuller, K. R., Rings and categories of modules, Springer-Verlag, New York, 1974. CR - Aydoğdu, P., López-Permouth, S. R., An alternative perspective on injectivity of modules, J. Algebra, 338 (2011) 207-219. CR - Durğun, Y., An alternative perspective on flatness of modules, J. Algebra Appl., 15(8) (2016) 1650145, 18. communiserial : Fieldhouse, D. J., Pure theories, Math. Ann., 184 (1969) 1-18. CR - Harmanci, A., López-Permouth, S. R., Üngör, B., On the pure-injectivity profile of a ring, Comm. Algebra , 43(11) (2015) 4984-5002. CR - Hiremath, V. A., Cofinitely generated and cofinitely related modules, Acta Math. Acad. Sci. Hungar., 39 (1982), 1-9. CR - Hiremath (Madurai), V. A., Copure Submodules, Acta Math. Hung., 44(1-2) (1984) 3-12. CR - Hiremath (Madurai), V. A., Copure-injective modules, Indian J. Pure Appl. Math., 20(3) (1989) 250-259. CR - Hiremath (Madurai), V. A., Co-absolutely co-pure modules, Proceedings of the Edinburgh Mathematical Society, 29 (1986), 289-298. CR - Jans, J. P., On co-noetherian rings, J. London Math. Soc., 1 (1969), 588-590. CR - López-Permouth, S. R., Mastromatteo, J., Tolooei, Y., Üngör, B., Pure-injectivity from a different perspective, Glasg. Math. J., 60(1) (2018), 135--151. CR - López-Permouth, S. R., Simental-Rodriguez, J. E., Characterizing rings in terms of the extent of the injectivity and projectivity of their modules, J. Algebra, 362 (2012), 56-69. CR - Mao, L., Ding, N., Notes On Cotorsion Modules, Comm. Algebra, 33 (2005), 349-360. CR - Sharpe, D. W., Vamos, P., Injective Modules, (Cambridge Tracts in Mathematics and Mathematical Physics, 62), Cambridge, 1972. CR - Toksoy, S. E., Modules with minimal copure-injectivity domain, J. Algebra Appl., 18(11) (2019), 195-201. CR - Vamos, P., The dual of the notion of finitely generated, J. London Math. Soc., 43 (1968), 643-646. CR - Vamos, P., Classical rings, J. Algebra, 34 (1975), 114-129. UR - https://doi.org/10.31801/cfsuasmas.640331 L1 - https://dergipark.org.tr/en/download/article-file/1072016 ER -