TY - JOUR T1 - ANTİMİKROBİYAL PEPTİTLERİN PROİNFLAMATUAR YANITTAKİ POTANSİYELLERİ AU - Çetin Uyanıkgil, Emel Öykü AU - Akar, Sibel PY - 2020 DA - March Y2 - 2019 DO - 10.17343/sdutfd.641016 JF - Medical Journal of Süleyman Demirel University JO - Med J SDU PB - Süleyman Demirel University WT - DergiPark SN - 1300-7416 SP - 145 EP - 153 VL - 27 IS - 1 LA - tr AB - Günümüzde yara iyileşmesi üzerine yapılan bir çok çalışmabulunmaktadır. Yara iyileşmesinde etkili olduğu kanıtlanan birçok etkin maddeve farmasötik dozaj şekli tanımlanmıştır. Antimikrobiyal peptitler (AMP)insanların, hayvanların ve bitkilerin bir çok doku ve organları tarafındanüretilen peptitlerdir ve doğal immün sistemin yadsınamaz savaşçılarıdır. AMP’ler;antibakteriyel, antiviral, antifungal, antiparazitik, insektisidal, kemotaktik,yara iyileşmesi ve büyüme uyarıcı olarak pek çok etkiye sahipolabilmektedirler. AMP’lerin, proinflamatuar yanıttaki potansiyelleri üzerineyapılan pek çok çalışma bulunmaktadır. AMP’ler yara iyileşmesinde rolalmalarının yanı sıra bir çok insan dermal hastalığında da önemli birpotansiyel taşımaktadırlar. Bu yazıda proinflamatuar yanıtın bir parçası olan yaraiyileşme sürecinde gerçekleşen birbiri ile bağlantılı basamaklar açıklanmış vebu basamaklarda AMP‘lerin aldıkları roller ve önemlerinden bahsedilmiştir;ayrıca insan dermal hastalıklarındaki potansiyellerinin araştırıldığıçalışmalara da değinilmiştir. KW - antimikrobiyal peptit KW - yara KW - proinflamatuar KW - LL-37 KW - hBD-3 CR - Aşkar Ş, Aşkar TK. Anti̇mi̇krobi̇yel protei̇nler ve bağışıklıktaki önemi̇. Balıkesir Sağlık Bilim Derg. 2017;6(2):82-86. doi:10.5505/bsbd.2017.13002. CR - Dubois RJ. Studies on a bactericidal agent extracted from a soil Bacillus. J Exp Med. 1939;70(1):1-10. doi:10.1084/jem.70.3.249. CR - Galton F. Letters to the editors - Pangenesis. Nature. 1871;4(79):5-6. CR - Van Epps HL. René Dubos: Unearthing antibiotics. J Exp Med. 2006;203(2):259. doi:10.1084/jem.2032fta. CR - Dubos RJ, Hotchkiss RD. The Production Of Bactericidal Substances By Aerobic Sporulating Bacilli. 1941:629-640. CR - Rammelkamp CH, Weinstein L. Toxic effects of tyrothricin, gramicidin and tyrocidine. J Infect Dis. 1942. doi:10.1093/infdis/71.2.166. CR - Balls AK., Hale WS, Harris TH. A crystalline protein obtained from a lipoprotein of wheat flour. Cereal Chem. 1942;19:279-288. CR - Ohtani K, Okada T, Yoshizumi H, Kagamiyama H. Complete primary structures of two subunits of purothionin A, a lethal protein for brewer’s yeast from wheat flour. J Biochem. 1977. doi:10.1093/oxfordjournals.jbchem.a131752. CR - Hirsch JG. Phagocytin: A bactericidal substance from polymorphonuclear leucocytes. J Exp Med. 2004. doi:10.1084/jem.103.5.589. CR - Groves ML, Peterson RF, Kiddy CA. Polymorphism in the red protein isolated from milk of individual cows. Nature. 1965. doi:10.1038/2071007a0. CR - Zeya HI, Spitznagel JK. Antibacterial and enzymic basic proteins from leukocyte lysosomes: Separation and identification. Science (80- ). 1963;142(3595):1085-1087. doi:10.1126/science.142.3595.1085. CR - Schauber J, Gallo RL. Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol. 2008. doi:10.1016/j.jaci.2008.03.027. CR - Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389-395. doi:10.1038/415389a. CR - Radek K, Gallo R. Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol. 2007;29(1):27-43. CR - Conlon JM, Sonnevend A. Antimicrobial peptides in frog skin secretions. Methods Mol Biol. 2010;618:3-14. doi:10.1007/978-1-60761-594-1_1. CR - Ma Y, Liu C, Liu X, et al. Peptidomics and genomics analysis of novel antimicrobial peptides from the frog, Rana nigrovittata. Genomics. 2010;95(1):66-71. doi:10.1016/j.ygeno.2009.09.004. CR - Akkaya A. Antimikrobiyal Peptitlerin Yapıları ve Etki Mekanizmaları. İzmir; 2017. CR - Hancock REW, Chapple DS. Minireview Peptide antibiotics. Antimicrob Agents Chemother. 1999;43(6):1317-1323. CR - Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30(3):131-141. doi:10.1016/j.it.2008.12.003. CR - Westerhoff H V., Juretic D, Hendler RW, Zasloff M. Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci. 1989;86(17):6597-6601. doi:10.1073/pnas.86.17.6597. CR - Bahar AA, Ren D. Antimicrobial Peptides. Pharmaceuticals. 2013;28(6):1543-1575. doi:10.3390/ph6121543. CR - Dong GL, Hee NK, Park Y, et al. Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP (2-20), derived from N-terminus of Helicobacter pylori ribosomal protein L1. Biochim Biophys Acta - Protein Struct Mol Enzymol. 2002;1598(1-2):185-194. doi:10.1016/S0167-4838(02)00373-4. CR - Fernández-Vidal M, Jayasinghe S, Ladokhin AS, White SH. Folding Amphipathic Helices Into Membranes: Amphiphilicity Trumps Hydrophobicity. J Mol Biol. 2007;370(3):459-470. doi:10.1016/j.jmb.2007.05.016. CR - Mor A, Nicolas P. Isolation and structure of novel defensive peptides from frog skin. Eur J Biochem. 1994;219(1-2):145-154. doi:10.1111/j.1432-1033.1994.tb19924.x CR - Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol. 2016;6(194). doi:10.3389/fcimb.2016.00194 CR - Shai Y, Oren Z. From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides. 2001;22(10):1629-1641. doi:10.1016/S0196-9781(01)00498-3 CR - Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27-55. doi:10.1124/pr.55.1.2 CR - Hara T, Mitani Y, Tanaka K, et al. Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: A cross-linking study. Biochemistry. 2001;40(41):12395-12399. doi:10.1021/bi011413v CR - Kamysz W, Okrój M, Łukasiak J. Novel properties of antimicrobial peptides. Acta Biochim Pol. 2003;50(2):461-469. doi:10.1016/j.ijheatmasstransfer.2017.04.069 CR - Patton Jr. JH, Fabian TC. Complex pancreatic injuries. Surg Clin North Am. 1996. CR - Robson MC, Steed DL, Franz MG. Wound healing: Biologic features and approaches to maximize healing trajectories. Curr Probl Surg. 2001;38(2):72-140. doi:10.1067/msg.2001.111167 CR - Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med. 2014;6. doi:10.1126/scitranslmed.3009337 CR - Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin wound healing: Mechanisms and novel therapeutic targets. Adv Wound Care. 2018;7(7):209-231. doi:10.1089/wound.2017.0761 CR - Diegelmann RF, Evans MC. Wound healing: An overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9:283-289. doi:10.2741/1184 CR - Julier Z, Park AJ, Briquez PS, Martino MM. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 2017;53:13-28. doi:10.1016/j.actbio.2017.01.056 CR - Delavary BM, van der Veer WM, van Egmond M, Niessen FB, Beelen RHJ. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753-762. doi:10.1016/j.imbio.2011.01.001 CR - Szpaderska AM, Egozi EI, Gamelli RL, DiPietro LA. The effect of thrombocytopenia on dermal wound healing. J Invest Dermatol. 2003;120(6):1130-1137. doi:10.1046/j.1523-1747.2003.12253.x CR - Martin P, Leibovich SJ. Inflammatory cells during wound repair: The good, the bad and the ugly. Trends Cell Biol. 2005;15(11):599-607. doi:10.1016/j.tcb.2005.09.002 CR - Deppermann C, Cherpokova D, Nurden P, et al. Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. J Clin Invest. 2013;123(8):3331-3342. doi:10.1172/JCI69210 CR - Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159-175. doi:10.1038/nri3399 CR - Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil Extracellular Traps Kill Bacteria. Science. 2004;303(5663):1532-1535. doi:10.1126/science.1092385 CR - Wilgus TA, Roy S, McDaniel JC. Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Adv Wound Care. 2013;2(7):379-388. doi:10.1089/wound.2012.0383 CR - Willenborg S, Eming SA. Macrophages - sensors and effectors coordinating skin damage and repair. JDDG J der Dtsch Dermatologischen Gesellschaft. 2014;12(3):214-221. doi:10.1111/ddg.12290 CR - MacDonald KPA, Palmer JS, Cronau S, et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood. 2010;116(19):3955-3963. doi:10.1182/blood-2010-02-266296 CR - Murray PJ, Allen JE, Biswas SK, et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity. 2014;41(1):14-20. doi:10.1016/j.immuni.2014.06.008 CR - DiPietro LA, Polverini PJ. Role of the macrophage in the positive and negative regulation of wound neovascularization. Behring Inst Mitt. 1993;Aug(92):238-247. CR - Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MPJ, Donners MMPC. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 2014;17(1):109-118. doi:10.1007/s10456-013-9381-6 CR - Boman HG. Innate immunity and the normal microflora. Immunol Rev. 2000;Feb(173):5-16. doi:10.1034/j.1600-065X.2000.917301.x CR - Harder J, Bartels J, Christophers E, Schroder JM. A peptide antibiotic from human skin. Nature. 1997;387(6636):861. doi:10.1038/43088 CR - Frohm M, Agerberth B, Ahangari G, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem. 1997;272(24):15258-15263. doi:10.1074/jbc.272.24.15258 CR - Duplantier AJ, van Hoek ML. The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Front Immunol. 2013;4(143). doi:10.3389/fimmu.2013.00143 CR - Sorensen OE, Cowland JB, Theilgaard-Monch K, Liu L, Ganz T, Borregaard N. Wound Healing and Expression of Antimicrobial Peptides/Polypeptides in Human Keratinocytes, a Consequence of Common Growth Factors. J Immunol. 2014;170(11):5583-5589. doi:10.4049/jimmunol.170.11.5583 CR - Nijnik A, Pistolic J, Filewod NCJ, Hancock REW. Signaling pathways mediating chemokine induction in keratinocytes by cathelicidin LL-37 and flagellin. J Innate Immun. 2012;4(4):377-386. doi:10.1159/000335901 CR - Chamorro CI, Weber G, Grönberg A, Pivarcsi A, Ståhle M. The human antimicrobial peptide LL-37 suppresses apoptosis in keratinocytes. J Invest Dermatol. 2009;129(4):937-944. doi:10.1038/jid.2008.321 CR - Carretero M, Escámez MJ, García M, et al. In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J Invest Dermatol. 2008;128(1):223-236. doi:10.1038/sj.jid.5701043 CR - Braff MH, Hawkins MA, Nardo A Di, et al. Structure-Function Relationships among Human Cathelicidin Peptides: Dissociation of Antimicrobial Properties from Host Immunostimulatory Activities. J Immunol. 2005;174(7):4271-4278. doi:10.4049/jimmunol.174.7.4271 CR - Tomasinsig L, Pizzirani C, Skerlavaj B, et al. The human cathelicidin LL-37 modulates the activities of the P2X 7 receptor in a structure-dependent manner. J Biol Chem. 2008;283(45):30471-30481. doi:10.1074/jbc.M802185200 CR - Shaykhiev R, Beißwenger C, Kändler K, et al. Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol - Lung Cell Mol Physiol. 2005;289(5):842-848. doi:10.1152/ajplung.00286.2004 CR - Girnita A, Zheng H, Grönberg A, Girnita L, Sthle M. Identification of the cathelicidin peptide LL-37 as agonist for the type i insulin-like growth factor receptor. Oncogene. 2012;31(3):352-365. doi:10.1038/onc.2011.239 CR - Jung Kim D, Lee YW, Park MK, et al. Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection. Amino Acids. 2014;46(10):2333-2343. doi:10.1007/s00726-014-1780-5 CR - Steinstraesser L, Hirsch T, Schulte M, et al. Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One. 2012. doi:10.1371/journal.pone.0039373 CR - Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 2018;9(281). doi:10.3389/fphar.2018.00281 CR - Ramos R, Silva JP, Rodrigues AC, et al. Wound healing activity of the human antimicrobial peptide LL37. Peptides. 2011;32(7):1469-1476. doi:10.1016/j.peptides.2011.06.005 CR - Rivas-Santiago B, Trujillo V, Montoya A, et al. Expression of antimicrobial peptides in diabetic foot ulcer. J Dermatol Sci. 2012;65(1):19-26. doi:10.1016/j.jdermsci.2011.09.013 CR - Takahashi T, Gallo RL. The Critical and Multifunctional Roles of Antimicrobial Peptides in Dermatology. Dermatol Clin. 2017;35(1):39-50. doi:10.1016/j.det.2016.07.006 CR - Lande R, Chamilos G, Ganguly D, et al. Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA. Eur J Immunol. 2015;45(1):2013-2213. doi:10.1002/eji.201344277 CR - Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol. 2017;26(11):989-998. doi:10.1111/exd.13314 CR - Kiatsurayanon C, Niyonsaba F, Smithrithee R, et al. Host defense (antimicrobial) peptide, human β-defensin-3, improves the function of the epithelial tight-junction barrier in human keratinocytes. J Invest Dermatol. 2014;134(8):2163-2173. doi:10.1038/jid.2014.143 UR - https://doi.org/10.17343/sdutfd.641016 L1 - https://dergipark.org.tr/en/download/article-file/990026 ER -