TY - JOUR T1 - Well-Defined Solutions of a Three-Dimensional System of Difference Equations AU - Yazlik, Yasin AU - Kara, Merve AU - Touafek, Nouressedat PY - 2020 DA - September DO - 10.35378/gujs.641441 JF - Gazi University Journal of Science PB - Gazi University WT - DergiPark SN - 2147-1762 SP - 767 EP - 778 VL - 33 IS - 3 LA - en AB - We show that thethree-dimensional system of difference equationsx_{n+1}=\frac{ax_{n}z_{n-1}}{z_{n}-\beta}+\gamma, y_{n+1}=\frac{by_{n}x_{n-1}}{x_{n}-\gamma}+\alpha, z_{n+1}=\frac{cz_{n}y_{n-1}}{y_{n}-\alpha}+\beta, where the parameters a,b,x, \alpha, \beta, \gammaand the initialconditions x_{-i}, y_{-i}, i\in\{0,1\} are non-zero realnumbers, can be solved. Using the obtained formulas, we determine the asymptoticbehavior of solutions and give conditions for which periodic solutions exists.Some numerical examples are given to demonstrate the theoretical results. KW - Periodic solution KW - difference equation KW - three dimensional system of difference equations CR - [1] Cinar, C., “On the positive solutions of the difference equation ” , Appl. Math. Comput., 150(1): 21-24, (2004). CR - [2] Cinar, C., Toufik, M. and Yalcinkaya, I., “On the difference equation of higher order”, Util. Math., 92: 161-166, (2013). CR - [3] Din, Q., “Global behavior of a rational difference equation”, Acta Univ. Apulensis., 34: 35-49, (2013). CR - [4] Elabbasy, EM., El-Metwally, H. and Elsayed, EM., “Qualitative behavior of higher order difference equation”, Soochow J. Math., 33: 861-873, (2007). CR - [5] Elaydi, S., An Introduction to Difference Equations 3 nd ed., Springer, New York, (1996). CR - [6] Elmetwally, ME. and Elsayed, EM., “Dynamics of a rational difference equation”, Chin. Ann.Math. Ser. B., 30B(2): 187-198, (2009). CR - [7] Elmetwally, H., Yalcinkaya, I. and Cinar, C., “On the dynamics of a recursive sequence”, Electron. J. Math. Anal. Appl., 5(1): 196-201, (2017). CR - [8] Elsayed, EM., “On the solutions and periodic nature of some systems of difference equations”, Int. J. Biomath., 7(6): 1-26, (2014). CR - [9] Elsayed, EM., “Solution for systems of difference equations of rational form of order two”, Int. J. Comput. Appl. Math., 33: 751-765, (2014). CR - [10] Elsayed, EM., “Expression and behavior of the solutions of some rational recursive sequences”, Math. Methods Appl. Sci., 39: 5682-5694, (2016). CR - [11] Gelisken, A., Cinar, C. and Yalcinkaya, I., “On a max-type difference equation”, Adv. Difference Equ., 2010(1): 584890, (2010). CR - [12] Gelisken, A., Cinar, C. and Yalcinkaya, I., “On the periodicity of a difference equation with maximum”, Discrete Dyn. Nat. Soc., 2008: (2008). CR - [13] Gümüs, M. and Soykan, Y., “Global character of a six-dimensional nonlinear system of difference equations”, Discrete Dyn. Nat. Soc., 2016: (2016). CR - [14] Haddad, N., Touafek, N. and Rabago, JFT., “Well-defined solutions of a system of difference equations”, Journal of Appl. Math. and Comput., 56(1-2): 439-458, (2018). CR - [15] Kara, M. and Yazlik, Y., “Solvability of a system of non-linear difference equations of higher order”, Turk. J. Math., 43(3): 1533-1565, (2019). CR - [16] Kara, M., Tollu, DT. and Yazlik, Y., “Representation of solutions of some systems of difference equations via Padovan numbers”. (to appear). CR - [17] Kurbanli, AS., Yalcinkaya, I. and Gelisken, A., “On the behavior of the solutions of the system of rational difference equations”, International Journal of Physical Sciences, 8(2): 51-56, (2013). CR - [18] Kurbanli, AS., Cinar, C. and Yalcinkaya, I., “On the behavior of positive solutions of the system of rational difference equations ” , Math. Comput. Modelling., 53: 1261-1267, (2011). CR - [19] Öcalan, Ö., “Oscillation of nonlinear difference equations with several coefficients”, Commun. Math. Anal., 4 (1): 35-44 (2008). CR - [20] Okumus, I. and Soykan, Y., “Dynamical behavior of a system of three-dimensional nonlinear difference equations”, Adv. Difference Equ., 2018(223): 1-15, (2018). CR - [21] Papaschinopoulos, G., Schinas, CJ. and Ellina, G., “On the dynamics of the solutions of a biological model”, J. Difference Equ. Appl., 20(56): 694-705, (2014). CR - [22] Rabago, JFT., “On second-order linear recurrent homogeneous differential equations with period k”, Hacet. J. Math. Stat., 43(6): 923-933, (2014). CR - [23] Rabago, JFT., “On second-order linear recurrent functions with period k and proofs to two conjectures of Sroysang”, Hacet. J. Math. Stat., 45(2): 429-446, (2016). CR - [24] Rabago, JFT. and Bacani, JB., “On a nonlinear difference equations”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 24: 375-394, (2017). CR - [25] Tollu, DT., Yazlik, Y. and Taskara, N., “On fourteen solvable systems of difference equations”, Appl. Math. Comput., 233: 310-319, (2014). CR - [26] Tollu, DT., Yazlik, Y. and Taskara, N., “Behavior of positive solutions of a difference equation”, J. Appl. Math. Informatics., 35: 217-230, (2017). CR - [27] Touafek, N., “On a second order rational difference equation”, Hacet. J. Math. Stat., 41: 867-874, (2012). CR - [28] Touafek, N. and Elsayed, EM., “On the periodicity of some systems of nonlinear difference equations”, Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie, 55(103): 217-224, (2012). CR - [29] Touafek, N. and Elsayed, EM., “On a second order rational systems of difference equations”, Hokkaido Math. J., 44: 29-45, (2015). CR - [30] Yalcinkaya, I. and Cinar, C., “Global asymptotic stability of a system of two nonlinear difference equations”, Fasc. Math., 43: 171-180, (2010). CR - [31] Yalcinkaya, I. and Tollu, DT., “Global behavior of a second order system of difference equations”, Adv. Stud. Contemp. Math., 26(4): 653-667, (2016). CR - [32] Yang, K. and Cushing, JM., “Global stability in a nonlinear difference-delay equation model of flour beetle population growth”, J. Difference Equ. Appl., 2(1): 31-37, (1996). CR - [33] Yazlik, Y., “On the solutions and behavior of rational difference equations”, J. Comput. Anal. Appl., 17(3): 584-594, (2014). CR - [34] Yazlik, Y., Elsayed, EM. and Taskara, N., “On the behaviour of the solutions the solutions of difference equation system”, J. Comput. Anal. Appl., 16(5): 932-941, (2014). CR - [35] Yazlik, Y., Tollu, DT. and Taskara, N., “On the behaviour of solutions for some systems of difference equations”, J. Comput. Anal. Appl., 18(1): 166-178, (2015). CR - [36] Yazlik, Y., Tollu, DT. and Taskara, N., "On the solutions of a three-dimensional system of difference equations", Kuwait J. Sci., 43(1): 95-111, (2015). CR - [37] Yazlik, Y. and Kara, M., “On a solvable system of difference equations of higher-order with period two coefficients”, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 68(2): 1675-1693, (2019). CR - [38] Yazlik, Y. and Kara, M., “Beşinci mertebeden fark denklem sisteminin çözülebilirliği üzerine”, Eskisehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B- Teorik Bilimler, 7(1): 29-45, (2019). CR - [39] Wang, X. and Li, Z., “Global asymptotic stability for two kinds of higher order recursive sequences”, J. Difference Equ. Appl., 22(10): 1542-1553, (2016). UR - https://doi.org/10.35378/gujs.641441 L1 - https://dergipark.org.tr/en/download/article-file/1148970 ER -