TY - JOUR T1 - Multi-Parametric Families of Solutions of Order $N$ to the Boussinesq and KP Equations and the Degenerate Rational Case AU - Gaillard, Pierre PY - 2020 DA - June Y2 - 2020 DO - 10.32323/ujma.644837 JF - Universal Journal of Mathematics and Applications JO - Univ. J. Math. Appl. PB - Emrah Evren KARA WT - DergiPark SN - 2619-9653 SP - 44 EP - 52 VL - 3 IS - 2 LA - en AB - From elementary exponential functions which depend on several parameters, we construct multi-parametric solutions to the Boussinesq equation. When we perform a passage to the limit when one of these para\-meters goes to $0$, we get rational solutions as a quotient of a polynomial of degree $N(N+1)-2$ in $x$ and $t$, by a polynomial of degree $N(N+1)$ in $x$ and $t$ for each positive integer $N$ depending on $3N$ real parameters. We restrict ourself to give the explicit expressions of these rational solutions for $N=1$ until $N=3$ to shortened the paper. We easily deduce the corresponding explicit rational solutions to the Kadomtsev Petviashvili equation for the same orders from $1$ to $3$. KW - Boussinesq equation KW - determinants KW - Lax pairs KW - rational solutions CR - [1] J. Boussinesq, Theorie de l’intumescence appel´ee onde solitaire ou de translation se propageant dans un canal rectangulaire, C.R.A.S., V 72 (1871), 755-759 CR - [2] J. Boussinesq, Theorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., Ser. 2, T. 17, (1872), 55-108 CR - [3] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, L.M.S. Lect. Notes Math., (1991) 149 CR - [4] P. Deift, C. Tomei, E. Trubowitz, Inverse scattering and the Boussinesq equation, Com. Pure Appl. Math., 35, (1992), 567-628 CR - [5] M. Toda,Studies of a nonlinear lattice, Phys. Rep., 8, (1975), 1-125 CR - [6] V.E. Zakharov, On stochastization of one-dimensional chains of nonlinear oscillations, Sov. Phys. JETP, 38, (1974), 108-110 CR - [7] E. Infeld, G. Rowlands, Nonlinear Waves, Solitons and Chaos, C.U.P., 1990 CR - [8] R. Hirota, J. Satsuma, Non linear evolution equations generated from the Backlund transformation fot the Boussinesq equation, Prog. of Theor. Phys., 57, (1977), 797-807 CR - [9] M.J. Ablowitz, J. Satsuma, Solitons and rational solutions of nonlinear evolution equations, J. Math. Phys., 19, (1978), 2180-2186 CR - [10] J.J.C. Nimmo, N.C. Freemann, A method of obtaining the N soliton solution of the Boussinesq equation in terms of a wronskian, Phys. Lett., 95, N. 1, (1983), 4-6 CR - [11] V.B. Matveev, A.O. Smirnov, On the Riemann theta function of a trigonal curve and solutions of the Boussinesq anf KP equations, L.M.P., 14, (1987), 25-31 CR - [12] V.B. Matveev and M.A. Salle, Darboux transformations and solitons, Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 CR - [13] L.V. Bogdanov, V.E. Zakharov, The Boussinesq equation revisited, Phys. D, 165, (2002), 137-162 CR - [14] P.A. Clarkson, Rational solutions of the Boussinesq equation, Anal. Appl., 6, (2006), 349-369 CR - [15] P.A. Clarkson, Rational solutions of the classical Boussinesq system, Nonlin. Anal. : Real World Appl., 10, (2010), 3361-3371 CR - [16] P.A. Clarkson, E. Dowie, Rational solutions of the Boussinesq equation and applications to rogue waves, Trans. of Math. and its Appl., 1, (2017), 1-26 UR - https://doi.org/10.32323/ujma.644837 L1 - https://dergipark.org.tr/en/download/article-file/1162320 ER -