TY - JOUR T1 - PARTIAL PURIFICATION AND CHARACTERIZATION OF AN EXTRACELLULAR METALLOPEPTIDASE PRODUCED BY Bacillus amyloliquefaciens FE-K1 AU - Certel, Muharrem AU - Erem, Fundagül AU - İnan, Mehmet AU - Karakaş Budak, Barçın PY - 2020 DA - April Y2 - 2020 DO - 10.23902/trkjnat.647525 JF - Trakya University Journal of Natural Sciences JO - Trakya Univ J Nat Sci PB - Trakya University WT - DergiPark SN - 2528-9691 SP - 47 EP - 61 VL - 21 IS - 1 LA - en AB - The aim of this study was to purify and characterize the peptidase of Bacillus amyloliquefaciens (Fukumoto) (strain FE-K1) isolated from ropey bread. Peptidases were purified from crude enzyme solution by affinity chromatography with an efficiency of 25 % and a purification coefficient of 1.53. The optimum pH of partially purified peptidase (PPPase) solution was determined as 7.5 and the peptidases retained approximately 90 % of their initial activity in the pH range 7.0-8.5 following incubation at 37°C for 2 h. The optimum temperature for the PPPase was 60°C. The approximate molecular weight of the PPPase was determined as 36 kDa. Inactivation of the PPPase in the presence of O-FEN and EDTA showed them to be metallopeptidases and 5 mM of K+1 and 5 mM of Mn+2 ions increased the enzyme activity by 4 % and 6.15 %, respectively. The presence of Hg+2, Fe+3 and SDS (0.1-1.0 % w/v) caused inactivation whereas the enzyme retained most of its activity in the presence of 0.1-1.0 % (v/v) Triton X-100, Tween 20 and Tween 80 and 1-20 % (v/v) xylene, ethanol, acetone and acetonitrile. Characterization of the PPPase revealed the enzyme as a neutral serine metallopeptidase compatible with some organic solvents and surfactants. KW - Bacillus amyloliquefaciens KW - metallopeptidase KW - ropy bread KW - purification N2 - Bu çalışmanın amacı, sünmüş ekmeklerden izole edilen Bacillus amyloliquefaciens (Fukumoto) (suş FE-K1) ile elde edilen peptidazı saflaştırmak ve karakterize etmektir. Peptidazlar ham enzim çözeltisinden afinite kromatografisi ile % 25 verim ve 1,53 saflaştırma katsayısı ile saflaştırılmıştır. Kısmi olarak saflaştırılmış peptidaz (PPPaz) çözeltisinin optimum pH değeri 7,5 olarak tespit edilmiş olup, pH 7,5-8,0 aralığında peptidaz, 37°C’de 2 saat inkübasyonun ardından başlangıç aktivitesini yaklaşık % 90 oranında korumuştur. PPPaz’ın optimum sıcaklığı 60°C’dir. PPPaz’ın yaklaşık molekül ağırlığı 36 kDa olarak belirlenmiştir. PPPaz’ın O-FEN ve EDTA varlığında inaktive olması, enzimin metallopeptidaz olduğunu göstermiştir. Ayrıca 5 mM K+1 ve 5 mM Mn+2, enzimin aktivitesini sırasıyla % 4 ve % 6,15 oranında artırmıştır. Hg+2, Fe+3 ve SDS (% 0,1-1,0 w/v) varlığı enzimin inaktivasyonuna neden olurken, % 0,1-1,0 (v/v) Triton X-100, Tween 20 ve Tween 80; ve % 1-20 (v/v) ksilen, etanol, aseton ve asetonitril varlığında enzim aktivitesini büyük ölçüde korumuştur. PPPaz’ın karakterizasyonu, enzimin bazı organik çözücü ve yüzey aktif maddelerle ile uyumlu nötr bir serin metalopeptidaz olduğunu ortaya çıkarmıştır. CR - 1. Abdel-Naby, M.A., Ahmed, S.A., Wehaidy, H.R. & El-Mahdy, S.A. 2017. Catalytic, kinetic and thermodynamic properties of stabilized Bacillus stearothermophilus alkaline protease. International Journal of Biological Macromolecules, 96: 265-271. CR - 2. Amal, K. & Abdelouahab, N. 2017. Characterization of a milk-clotting enzyme produced by Bacillus mojavensis P47M strain isolated from Algerian dairy farm soil. Research Journal of Biotechnology, 12(12): 37-45. CR - 3. Bailey, C.P. & von Holy, A. 1993. Bacillus spore contamination associated with commercial bread manufacture. Food Microbiology, 10: 287-294. CR - 4. Bankus, J.M. & Bond, J.S. 2001. Appendix II- Some commercially available proteases. Pp. 295-316. In: Reynon, B. & Bond, J.S. (eds) Proteolytic Enzymes. Oxford University Press, New York, 320 pp. CR - 5. Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. CR - 6. Choi, J.H., Kim, J.E., Kim, S., Yoon, J., Park, D.H., Shin, H.J., Lee, H.J. & Cho, S.S. 2017. Purification and partial characterization of a low molecular fibrinolytic serine metalloprotease C142 from the culture supernatant of Bacillus subtilis C142. International Journal of Biological Macromolecules, 104: 724-731. CR - 7. Collins, N.E., Kirschner, L.A.M. & von Holy, A. 1991. Characterization of Bacillus isolates from ropey bread, bakery equipment and raw materials. South African Journal of Science, 87: 62-66. CR - 8. Contesini, F.J., Melo, R.R. & Sato, H.H. 2018. An overview of Bacillus proteases: from production to application. Critical Reviews in Biotechnology, 38(3): 321-334. CR - 9. Cupp-Enyard, C. 2008. Sigma’s non-specific protease activity assay-casein as a substrate. Journal of Visualized Experiments, 19: 899. CR - 10. da Silva, R.R. 2017. Bacterial and fungal proteolytic enzymes: production, catalysis and potential applications. Applied Biochemistry and Biotechnology, 183: 1-19. CR - 11. D’Costa, B., Khanolkar, D. & Dubey, S.K. 2013. Partial purification and characterization of metalloprotease of halotolerant alkaliphilic bacterium Bacillus cereus from coastal sediment of Goa, India. African Journal of Biotechnology, 12(31): 4905-4914. CR - 12. Doddapaneni, K.K., Tatineni, R., Vellanki, R.N., Rachcha, S., Anabrolu, N., Narakuti, V. & Mangamoori, L.N. 2009. Purification and characterization of a solvent and detergent-stable novel protease from Bacillus cereus. Microbiological Research, 164: 383-390. CR - 13. Ellis, W.O., Obubuafo, A.K., Ofosu-Okyere, A., Marfo, E.K., Osei-Agyemang, K. & Odame-Darkwah, J.K. 1997. A survey of bread defects in Ghana. Food Control, 8: 77-82. 14. Erem, F. & Certel, M. 2018. Determination of peptidase production potential of Bacillus strains isolated from ropey bread and optimisation of some culture conditions for peptidase production. Anadolu University Journal of Science and Technology C-Life Sciences and Biotechnology, 7(2): 160-179. CR - 15. Erem, F., Certel, M. & Karakaş, B. 2009. Identification of Bacillus species isolated from ropey breads both with classical methods and API identification kits. Mediterranean Agricultural Sciences, 22(2): 201-210. CR - 16. Erem, F., Inan, M. & Certel, M. 2018. Optimisation of Bacillus amyloliquefaciens FE-K1 extracellular peptidase production by response surface methodology. Trakya University Journal of Natural Sciences, 19(2): 59-173. CR - 17. Fernández-Resa, P., Mira, E. & Quesada, R. 1994. Enhanced detection of casein zymography of matrix metalloproteinases. Analytical Biochemistry, 224: 434-435. CR - 18. Furhan, J., Salaria, N., Jabeen, M. & Qadri, J. 2019. Partial purification and characterisation of cold-active metalloprotease by Bacillus sp. AP1 from Apharwat peak, Kashmir. Pakistan Journal of Biotechnology, 16(1): 47-54. CR - 19. Ghorbel, B., Sellami-Kamoun, A. & Nasri, M. 2003. Stability studies of protease from Bacillus cereus BG1. Enzyme Microbiology and Technology, 32: 513-518. CR - 20. Gupta, M.N. 1992. Enzyme function in organic solvents. European Journal of Biochemistry, 203: 25-32. CR - 21. Gupta, R., Beg, Q.K., Khan, S. & Chauhan, B. 2002a. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Applied Microbiology and Biotechnology, 60: 381-395. CR - 22. Gupta, R., Beg, Q.K. & Lorenz, P. 2002b. Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59: 15-32. CR - 23. Hammami, A., Bayoudh, A., Hadrich, B., Abdelhedi, O., Jridi, M. & Nasri, M. 2020. Response-surface methodology for the production and the purification of a new H2O2-tolerant alkaline protease from Bacillus invictae AH1 strain. Biotechnology Progress, e2965, doi: https://doi.org/10.1002/btpr.2965. CR - 24. Iglesias, M.S., Sequeiros, C., García, S. & Olivera, N.L. 2017. Newly isolated Bacillus sp. G51 from Patagonian wool produces an enzyme combination suitable for felt-resist treatments of organic wool. Bioprocess and Biosystem Engineering, 40: 833-842. CR - 25. Jisha, V.N., Smitha, R.B., Pradeep, S., Sreedevi, S., Unni, K.N., Sajith, S., Priji, P., Josh, M.S. & Benjamin, S. 2013. Versatility of microbial proteases. Advances in Enzyme Research, 1(3): 39-51. CR - 26. Kirschner, L.A.M. & von Holy, A. 1989. Rope spoilage of bread. South African Journal of Science, 85: 425-427. CR - 27. Kumar, C.G. & Takagi, H. 1999. Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnology Advances, 17: 561-594. CR - 28. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685. CR - 29. Lauer, I., Bonnewitz, B., Meunier, A. & Beverini, M. 2000. New approach for separating Bacillus subtilis metalloprotease and α-amylase by affinity chromatography and for purifying neutral protease by hydrophobic chromatography. Journal of Chromatography B, 737: 277-284. CR - 30. Leber, T.M. & Balkwill, F.R. 1997. Zymography: a single-step staining method for quantitation of proteolytic activity on substrate gels. Analytical Biochemistry, 249: 24-28. 31. Lee, H., Suh, D.B., Hwang, J.H. & Suh, H.J. 2002. Characterization of a keratinolytic metalloprotease from Bacillus sp. Applied Biochemistry and Biotechnology, 97: 123-133. CR - 32. Lee, E.S., Lee, H.W., Lee, D.H. & Kim, H. 2016. Characterization of a metalloprotease from an isolate Bacillus thuringiensis 29-126 in animal feces collected from a zoological garden in Japan. Journal of Applied Biological Chemistry, 59(4): 373-377. CR - 33. Manni, L., Jellouli, K., Agrebi, R., Bayoudh, A. & Nasri, M. 2008. Biochemical and molecular characterization of a novel calcium-dependent metalloprotease from Bacillus cereus SV1. Process Biochemistry, 43: 522-530. CR - 34. Manni, L.-M., Jellouli, K., Ghorbel-Bellaaj, O., Agrebi, R., Sellami-Kamoun, A. & Nasri, M. 2010. An oxidant- and solvent-stable protease produced by Bacillus cereus SV1: application in the deproteinization of shrimp wastes and as a laundry detergent additive. Applied Biochemistry and Biotechnology, 160: 2308-2321. CR - 35. Mardina, V. & Yusof, F. 2016. Purification and characterization of surfactant-stable protease from Bacillus licheniformis: A potential additive for laundry detergent. International Journal of Advanced Biotechnology and Research, 7(2): 634-643. CR - 36. Maruthiah, T., Somanath, B., Immanuel, G. & Palavesam, A. 2017. Investigation on production and purification of haloalkalophilic organic solvent tolerant protease from marine shell waste and its bioconversion to chitin by aquatic Bacillus sp. APCMST-CS4. Waste and Biomass Valorization, 8: 811-827. CR - 37. Matta, H. & Punj, V. 1998. Isolation and partial characterization of a thermostable extracellular protease of Bacillus polymyxa B-17. International Journal of Food Microbiology, 42: 139-145. CR - 38. Mothe, T. & Sultanpuram, V.R. 2016. Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus. 3 Biotech, 6(53): 1-10. CR - 39. Pepe, O., Blaiotta, G., Moschetti, G., Greco, T. & Villani, F. 2003. Rope-producing strains of Bacillus spp. from wheat bread and strategy for their control by lactic acid bacteria. Applied and Environmental Microbiology, 69(49): 2321-2329. CR - 40. Qureshi, A.S., Simair, A.A., Ali, C.H., Khushk, I., Khokhar, J.A., Ahmad, A., Danish, M. & Lu, C. 2018. Production, purification and partial characterization of organo-solvent tolerant protease from newly isolated Bacillus sp. BBXS-2. Fermentation Technology, 7(1): 151-159. CR - 41. Rahman, R.N.Z.R.A., Mahamad, S., Salleh, A.B. & Basri, M. 2007. A new organic solvent tolerant protease from Bacillus pumilus 115b. Journal of Industrial Microbiology and Biotechnology, 34: 509-517. CR - 42. Rao, M.B., Tanksale. A.M., Ghatge, M.S. & Deshpande, V.V. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62(3): 597-635. CR - 43. Rawlings, N.D., Morton, F.R. & Barrett, A.J. 2007. An introduction to peptidases and the Merops database. Pp. 161-179. In: Polaina, J. & MacCabe, A. (eds) Industrial enzymes-structure, function and applications. Springer, The Netherlands, xii + 641 pp. CR - 44. Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A. &Ashraf, M. 2019. Microbial Proteases Applications. Frontiers in Bioengineering and Biotechnology, 7: 110-129. CR - 45. Rehman, R., Ahmed, M., Siddique, A., Hasan, F., Hameed, A. & Jamal, A. 2017. Catalytic role of thermostable metalloproteases from Bacillus subtilis KT004404 as dehairing and destaining agent. Applied Biochemistry and Biotechnology, 181(1): 434-450. CR - 46. Rosenkvist, H. & Hansen, A. 1995. Contamination profiles and characterization of Bacillus species in wheat bread and raw materials for bread production. International Journal of Food Microbiology, 26: 353-363. CR - 47. Sabirova, A.R., Rudakova, N.L., Balaban, N.P., Ilyinskaya, O.P., Demidyuk, I.V., Kostrov, S.V., Rudenskaya, G.N. & Sharipova, M.R. 2010. A novel secreted metzincin metalloproteinase from Bacillus intermedius. FEBS Letters, 584: 4419-4425. CR - 48. Salleh, A.B., Razak, C.N.A., Rahman, R.N.Z.R.A. & Basri, M. 2006. Protease: introduction. Pp. 23-39. In: Salleh, A.B., Razak, C.N.A. & Basri, M. (eds) New lipases and proteases. Nova Science Publishers, New York, 159 pp. CR - 49. Salwan, R. & Sharma, V. 2019. Trends in extracellular serine proteases of bacteria as detergent bioadditive: alternate and environmental friendly tool for detergent industry. Archives of Microbiology, 201: 863-877. CR - 50. Sandhya, C., Nampoothiri, K.M. & Pandey, A. 2005. Microbial proteases, Pp. 165-179. In: Barredo, J.L. (ed) Microbial enzymes and biotransformations, Humana Press, Totowa, xi+319 pp. CR - 51. Schallmey, M., Singh, A. & Ward, O.P. 2004. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 50: 1-17. CR - 52. Sharmila, G.R., Halami, P.M. & Venkateswaran, G. 2018. Identification and characterization of a calcium dependent bacillopeptidase from Bacillus subtilis CFR5 with novel kunitz trypsin inhibitor degradation activity. Food Research International, 103: 263-272. CR - 53. Si, J.B., Jang, E.J., Charalampopoulos, D. & Wee, Y.J. 2018. Purification and characterization of microbial protease produced extracellularly from Bacillus subtilis FBL-1. Biotechnology and Bioprocess Engineering, 23(2): 176-182. CR - 54. Sousa, F., Jus, S., Erbel, A., Kokol, V., Cavco-Paulo, A. & Gubitz, G.M. 2007. A novel metalloprotease from Bacillus cereus for protein fibre processing. Enzyme and Microbial Technology, 40: 1772-1781. CR - 55. Thapa, S., Li, H., OHair, J., Bhatti, S., Chen, F.C., Nasr, K.A., Johnson, T. & Zhou, S. 2019. Biochemical characteristics of microbial enzymes and their significance from industrial perspectives. Molecular Biotechnology, 61: 579-601. CR - 56. Thompson, J.M., Dodd, C.E.R. & Waites, W.M. 1993. Spoilage of bread by Bacillus. International Biodeterioration and Biodegradation, 32: 55-66. CR - 57. Thompson, J.M., Waites, W.M. & Dodd, C.E.R. 1998. Detection of rope spoilage in bread caused by Bacillus species. Journal of Applied Microbiology, 85: 481-486. CR - 58. Tian, J., Long, X., Tian, Y. & Shi, B. 2019. Eco-friendly enzymatic dehairing of goatskins utilizing a metalloprotease high-effectively expressed by Bacillus subtilis SCK6. Journal of Cleaner Production, 212: 647-654. CR - 59. Volavsek, P.J.A., Kirschner, L.A.M. & von Holy, A. 1992. Accelerated methods to predict the rope-inducing potential of bread raw materials. South African Journal of Science, 88: 99-102. CR - 60. Voysey, P.A. 1989. Rope: a problem for bakers. Journal of Applied Bacteriology, 67: 25-26. CR - 61. Waites, M.J., Morgan, N.L., Rockey, J.S., and Higton, G. 2001. Industrial microbiology: an introduction. Blackwell, London, 288 pp. CR - 62. Wang, S.L., Kao, T.Y., Wang, C.L., Yen, Y.H., Chern, M.K. & Chen, Y.H. 2006. A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzyme Microbiology and Technology, 39: 724-731. CR - 63. Wu, J.W. & Chen, X.L. 2011. Extracellular metalloproteases from bacteria. Applied Microbiology and Biotechnology, 92: 253-262. UR - https://doi.org/10.23902/trkjnat.647525 L1 - https://dergipark.org.tr/en/download/article-file/1032880 ER -