TY - JOUR T1 - THE STUDY OF CLASSICS PARTICLES' ENERGY AT ARCHIMEDEAN SOLIDS WITH CLIFFORD ALGEBRA AU - Kılıç, Abidin AU - Çakmak, Şadiye PY - 2019 DA - December DO - 10.18038/estubtda.649511 JF - Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering JO - Estuscience - Se PB - Eskisehir Technical University WT - DergiPark SN - 2667-4211 SP - 170 EP - 180 VL - 20 LA - en AB - Geometricalgebras known as a generalization of Grassmann algebras complex numbers andquaternions are presented by Clifford (1878).Geometric algebra describing the geometric symmetries of both physicalspace and spacetime is a strong language for physics. Groups generated from`Clifford numbers` are firstly defined by Lipschitz (1886). They are used for defining rotations in aEuclidean space. In this work, Clifford algebra is identified. The energy ofclassic particles with Clifford algebra are defined. This calculations areapplied to some Archimedean solids. Also, the vertices of Archimedean solidspresented in the Cartesian coordinates are calculated. KW - Clifford Algebra KW - Archimedes Solids KW - Platonic Solids CR - [1] C. Doran, A. Lasenby, Geometric Algebra for Physicists. CR - [2] M. Kline, Mathematical Thought from Ancient to Modern Times. Oxford University Press, Oxford (1972). CR - [3] W. K. Clifford, Am. J. Math. 1(1878) 350. CR - [4] S. L. Altmann, Rotations, quaternions, and double groups. Clarendon Press, Oxford (1994). CR - [5] A. Kilic, K. Ozdas, M. Tanisli, An Investigation of Symmetry Operations with Clif¬ford Algebra 54(3) (2004). CR - [6] P. R. Girard, Quaternions, Clifford Algebra, and Relativistic Physics. CR - [7] J. Funda, R. P. Paul, A Comparison of Transforms and Quaternions in Physics, Proc. of 1988 IEEE Int. Conference on Robotics and Automation, Philadelphia, 1988, p.886. CR - [8] M. Tanışlı, Acta Physica Slovaca, 53(3) (2003) 253. Turkey, 2012. CR - [9] O. Rodriques, Journal de Mathematiques Pures et Appliquees 5 (1840) 380. CR - [10] P. Lounesto, Lectures on Clifford Geometric Algebras. TTU Press, Cookeville, TN, USA (2002) CR - [11] B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics. [12] J. Snygg: Clifford Algebra. CR - [13] A. Pokorny, P. Herzig, S. L. Altman, Spectrochimica Acta A 57 (2001) 1931. CR - [14] R. Williams, The Geometrical Foundation of Natural Structure. CR - [15] S. J. R. Anderson, G. C. Joshi: Physics Essays 6 (1993), 308. UR - https://doi.org/10.18038/estubtda.649511 L1 - https://dergipark.org.tr/en/download/article-file/886463 ER -