TY - JOUR T1 - Korovkin Type Approximation Theorem for Functions of Two Variables Through αβ−Statistical Convergence AU - Sözbir, Bayram AU - Altundağ, Selma PY - 2019 DA - December Y2 - 2019 DO - 10.33187/jmsm.652626 JF - Journal of Mathematical Sciences and Modelling PB - Mahmut AKYİĞİT WT - DergiPark SN - 2636-8692 SP - 198 EP - 204 VL - 2 IS - 3 LA - en AB - In this paper, we introduce the concepts of αβ−statistical convergence and strong αβ−summability of double sequences and investigate the relation between these two new concepts. Moreover, statistical convergence andαβ−statistical convergence of double sequences are compared under some certain assumptions. Finally, as an application, we prove Korovkin type approximation theorem for a function of two variables by using the notion ofαβ−statistical convergence. KW - αβ-statistical convergence KW - Double sequences KW - Korovkin type theorem KW - Lacunary statistical convergence KW - λ-statistical convergence KW - Statistical convergence CR - [1] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. CR - [2] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1) (1951), 73-74. CR - [3] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375. CR - [4] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30(2) (1980), 139-150. CR - [5] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313. CR - [6] J. A. Fridy, H. I. Miller, A matrix characterization of statistical convergence, Analysis, 11 (1991), 59-66. CR - [7] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160 (1993), 43-51. CR - [8] F. Moricz, C. Orhan, Tauberian conditions under which statistical convergence follows from statistical summability by weighted means, Studia Sci. Math. Hungar., 41 (2004), 391-403. CR - [9] J. S. Connor, The statistical and strong p-Ces`aro convergence of sequences, Analysis, 8 (1988), 47-63. CR - [10] P. Kostyrko, T. Salat, W. Wilczynki, I-convergence, Real Anal. Exchange, 26 (2) (2000-2001), 669-685. CR - [11] E. Savas, P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett., 24 (2011), 826-830. CR - [12] P. Das, E. Savas, S. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24 (2011), 1509-1514. CR - [13] M. Mursaleen, l􀀀statistical convergence, Math. Slovaca, 50 (1) (2000), 111-115. CR - [14] H. Aktuglu, Korovkin type approximation theorems proved via ab􀀀statistical convergence, J. Comput. Appl. Math., 259 (2014), 174-181. CR - [15] A. Karaisa, Statistical ab􀀀summability and Korovkin type approximation theorem, Filomat, 30(13) (2016), 3483-3491. CR - [16] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289-321. CR - [17] M. Mursaleen, O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223-231. CR - [18] M. Mursaleen, C. Cakan, S. A. Mohiuddine, E. Savas, Generalized statistical convergence and statistical core of double sequences, Acta Math. Sin. (Engl. Ser.), 26 (2010), 2131-2144. CR - [19] E. Savas, R. F. Patterson, Lacunary statistical convergence of multiple sequences, Appl. Math. Lett., 19 (2006), 527-534. CR - [20] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publishing Corporation, Delhi, 1960. CR - [21] V. I. Volkov, On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk. SSSR (N.S.), 115 (1957), 17-19. CR - [22] M. Mursaleen, V. Karakaya, M. Erturk, M. Gursoy, Weighted statistical convergence and its application to Korovkin type approximation theorem, Appl. Math. Comput., 218 (2012), 9132-9137. CR - [23] M. Mursaleen, A. Alotaibi, Statistical summability and approximation by de la Vall´ee-Poussin mean, Appl. Math. Lett., 24 (2011), 320-324. CR - [24] A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129-138. CR - [25] E. Erkus, O. Duman, A Korovkin type approximation theorem in statistical sense, Studia Sci. Math. Hungar., 43 (2006), 285-294. CR - [26] O. Duman, A Korovkin type approximation theorems via I-convergence, Czechoslovak Math. J., 57 (2007), 367-375. UR - https://doi.org/10.33187/jmsm.652626 L1 - https://dergipark.org.tr/en/download/article-file/899887 ER -