TY - JOUR T1 - Rayleigh-Quotient Representation of the Real Parts, Imaginary Parts, and Moduli of the Eigenvalues of General Matrices AU - Kohaupt, Ludwig PY - 2020 DA - August Y2 - 2020 DO - 10.33187/jmsm.669216 JF - Journal of Mathematical Sciences and Modelling PB - Mahmut AKYİĞİT WT - DergiPark SN - 2636-8692 SP - 55 EP - 75 VL - 3 IS - 2 LA - en AB - In the present paper, formulas for the Rayleigh-quotient representation of the real parts, imaginaryparts, and moduli of the eigenvalues of general matrices are obtained that resemble correspondingformulas for the eigenvalues of self-adjoint matrices. These formulas are of interest in Linear Algebraand in the theory of linear dynamical systems. The key point is that a weighted scalar product isused that is defined by means of a special positive definite matrix. As applications, one obtainsconvexity properties of newly-defined numerical ranges of a matrix. A numerical example underpinsthe theoretical findings. KW - Rayleigh quotient KW - Real and imaginary parts of eigenvalues KW - Moduli of eigenvalues KW - Asymptotic stability of dynamical systems KW - Circular damped eigenfrequencies CR - [ 1] F. Stummel, K. Hainer, Introduction to Numerical Analysis, Scottish Academic Press, Edinburgh, 1980. CR - [ 2] L. Kohaupt, Rayleigh-quotient representation of the real parts, imaginary parts, and moduli of the eigenvalues of diagonalizable matrices, J. Math. Sci. Model., 2(2) (2019), 82-98. CR - [ 3] L. Kohaupt, Solution of the vibration problem $M\ddot{y}+B\dot{y}+K y = 0, \, y(t_0)=y_0, \, \dot{y}(t_0)=\dot{y}_0$ {\em without} the hypothesis $B M^{-1} K = K M^{-1} B$ or $B = \alpha M + \beta K$}, Appl. Math. Sci., 2(41) (2008), 1989-2024. CR - [ 4] A.Czornik, P. Jurga´s, Some properties of the spectral radius of a set of matrices, Int. J. Appl. Math. Sci., 16(2)(2006)183-188. CR - [ 5] L. Kohaupt, Solution of the matrix eigenvalue problem $V A + A^{\ast} V = \mu V$ with applications to the study of free linear systems, J. Comp. Appl. Math., 213(1) (2008), 142-165. CR - [ 6] L. Kohaupt, Spectral properties of the matrix $C^{-1} B$ with positive definite matrix $C$ and Hermitian $B$ as well as applications, J. Appl. Math. Comput., 50 (2016), 389-416. CR - [ 7] T.J. Laffey, H. ˘Smigoc, Nonnegatively realizable spectra with two positive eigenvalues, Linear Multilinear Algebra, 58(7-8) (2010), 1053-1069. CR - [ 8] P. Lancaster, Theory of Matrices, Academic Press, New York and London, 1969. CR - [ 9] P.C. M¨uller, W.O. Schiehlen, Linear Vibrations, Martinus Nijhoff Publishers, Dordrecht Boston Lancaster, 1985. CR - [10] S.V. Savchenko, On the change in the spectral properties of a matrix under perturbations of sufficiently low rank, Funct. Anal. Appl., 38(1) (2004), 69-71. CR - [11] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer, New York Heidelberg, Third Edition, 2010. CR - [12] L. Kohaupt, Construction of a biorthogonal system of principal vectors of the matrices $A$ and $A^{\ast}$ with applications to the initial value problem $\dot{x}=A\,x, \; x(t_0)=x_0$, J. Comput. Math. Optim., 3(3) (2007), 163-192. CR - [13] L. Kohaupt, Further spectral properties of the matrix$C^{-1} B$ with positive definite $C$ and Hermitian $B$ applied to wider classes of matrices $C$ and $B$, J. Appl. Math. Comput., 52 (2016), 215-243. CR - [14] L. Kohaupt, Biorthogonalization of the principal vectors for the matrices $A$ and $A^{\ast}$ with application to the computation of the explicit representation of the solution $x(t)$ of $\dot{x}=A\,x, \; x(t_0)=x_0$, Appl. Math. Sci., 2(20) (2008), 961-974. UR - https://doi.org/10.33187/jmsm.669216 L1 - https://dergipark.org.tr/en/download/article-file/1266281 ER -