TY - JOUR T1 - Investigation of Manufacturing of a Pelton Turbine Runner of Composite Material on a 3D Printer AU - Bendeş, Oğuzhan AU - Güllüoğlu, Akil Murad AU - Yılmaz, Buğra AU - Yıldız, Adem PY - 2021 DA - March JF - Gazi University Journal of Science Part A: Engineering and Innovation JO - GU J Sci, Part A PB - Gazi University WT - DergiPark SN - 2147-9542 SP - 24 EP - 34 VL - 8 IS - 1 LA - en AB - Nowadays, different methods are used in manufacturing sector. One of these is the production technique on 3D printers, which is also described as additive manufacturing. In this study, Pelton turbine bucket was produced from composite material (carbon + thermoplastic) on a 3D printer and tested. Analytically, the special pelton turbine bucket designed at TEMSAN has a special form structure. Through additive manufacturing, the turbine runner was manufactured faster and more cost-effectively compared to production out of steel material. Tests were carried out in TEMSAN Hydraulic Test Laboratory at 5-7.5 bar pressure range and 26 l/s and 46 l/s flow rates. The highest breaking strength value was determined as 1775 N. KW - Pelton Turbine KW - Additive Manufacturing KW - Composite Turbine Runner CR - Adhikary, P., Roy, K. P., & Mazumdar, A. (2013). Selection of hydro-turbine blade material: Application of fuzzy logic (MCDA). International Journal of Engineering Research and Applications (IJERA), 3, 426-430. CR - Albertani, R. (2013) Design and Manufacturing Study of Hydroelectric Turbines Using Recycled and Natural Fibre Composites” MSc Thesis, Oregon State University, Oregon. CR - Ali, S. F., Malik, F. M., Kececi, E. F., & Bal, B. (2019). Optimization of Additive Manufacturing for Layer Sticking and Dimensional Accuracy. In: Kumar, K., Zindani, D., & Davim, J. P. (Eds.), Additive Manufacturing Technologies From an Optimization Perspective (pp. 185-198). IGI Global. doi:10.4018/978-1-5225-9167-2.ch009 CR - Blok, L. G., Longana, M. L., Yu, H., & Woods, B. K. S. (2018). An investigation into 3D printing of fibre reinforced thermoplastic composites. Additive Manufacturing, 22, 176-186. doi:10.1016/j.addma.2018.04.039 CR - Caminero, M. A., Chacón, J. M., García-Moreno, I., & Rodríguez, G. P. (2018). Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Composites Part B: Engineering, 148, 93-103. doi:10.1016/j.compositesb.2018.04.054 CR - Chouhan, K, S., Kisheorey, G. R., & Shah, M. (2017). Modelling, fabrication and analysis of pelton turbine for different head and materials. International Journal of Computational Engineering Research (IJCER), 7(2), 2250-3005. CR - Cousin, P., Hassan, M., Vijay, P., Robert, M., & Benmokrane, B. (2019). Chemical resistance of carbon, basalt, and glass fibres used in FRP reinforcing bars. Journal of Composite Materials, 53(26-27), 3651-3670. (2019). doi:10.1177/0021998319844306 CR - Dickson, A. N., Barry, J. N., McDonnell, K. A., & Dowling, D. P. (2017). Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Additive Manufacturing, 16, 146-152. doi:10.1016/j.addma.2017.06.004 CR - Dronesrate (2021). Drone Infographics : How 3D Printers Work. (Accessed:17/03/2021) dronesrate.com/drones-infographic/drone-infographics-drone-infographics-how-3d-printers-work-infographic-maybe-something-for-3d-p CR - Gummer, H. J. (2009). Combating Silt Erosion in Hydraulic Turbines. (Accessed:17/03/2021) https://www.renewableenergyworld.com/2009/03/01/combating-silt-erosion-in-hydraulic-turbines CR - Kussmaul, R., Zogg, M., Weiss, L., Relea, E., Jacomet, R., & Ermanni, P. (2017). Carbon Fiber Reinforced Polymers for High-dynamic Testing Machines. Procedia CIRP, 66, 10-15. doi:10.1016/j.procir.2017.03.300 CR - Neopane, H. P., Dahlhaug O. G., & Cervantes, M. (2011). Sediment erosion in hydraulic turbines. Global Journal of Researches in Engineering (Mechanical and Mechanics Engineering), 11(6), 17-26. CR - Peng, Y., Wu Y., & Wang, K. (2018). Synergistic reinforcement of polyamide-based composites by combination of short and continuous carbon fibres via fused filament fabrication, structures. Composite Structures, 207, 232-239. doi:10.1016/j.compstruct.2018.09.014 CR - Shirisha, A., Vinod Kumar, V., Santosh Kumar, S., Varun, K., & Bhavana, A. (2014). Advanced composite micro-hydro turbine runner design and study its performance for power generation. Advanced Materials Manufacturing & Characterization, 4(1), 57-61. doi:10.11127/ijammc.2014.03.09 CR - SubsTech (2021). Flexural strength tests of ceramics, 3-point Flexure Test - Ceramics. (Accessed:17/03/2021) www.substech.com/dokuwiki/doku.php?id=flexural_strength_tests_of_ceramics CR - Takagi, M., Watanabe, Y., Ikematsu, S., Hayashi, T., Fujimoto, T., & Shimatani, Y. (2014). 3D printed pelton turbine: how to produce effective technology linked with global knowledge. Energy Procedia, 61, 1593-1596. doi:10.1016/j.egypro.2014.12.179 CR - Thake, J. (2000). Micro-Hydro Pelton Turbine Manual: Design, Manufacture and Installation for Small-scale Hydro-power. ITDG. ISBN-13: 9781853394607 CR - ISO (2007). Plastics - Determination of tensile properties - Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites. TS EN ISO 527-4 CR - ISO (2010). Fibre-reinforced plastic composites - Determination of flexural properties. TS EN ISO 14125 CR - Zhao, H., Liu, X., Zhao, W., Wang, G., & Liu, B. (2019). An Overview of Research on FDM 3D Printing Process of Continuous Fiber Reinforced Composites. Journal of Physics: Conference Series, 1213(5), 052037. doi:10.1088/1742-6596/1213/5/052037 UR - https://dergipark.org.tr/en/pub/gujsa/issue//672604 L1 - https://dergipark.org.tr/en/download/article-file/924843 ER -