TY - JOUR T1 - Alternative characterizations of some linear combinations of an idempotent matrix and a tripotent matrix that commute TT - Değişmeli bir idempotent ve bir tripotent matrisin bazı lineer kombinasyonlarının alternatif karakterizasyonları AU - Petik, Tuğba AU - Gökmen, Burak Tufan PY - 2020 DA - January DO - 10.25092/baunfbed.680775 JF - Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi JO - BAUN Fen. Bil. Enst. Dergisi PB - Balıkesir University WT - DergiPark SN - 1301-7985 SP - 255 EP - 268 VL - 22 IS - 1 LA - en AB - In this work, first, Theorem 2 in [1] [Yao, H., Sun, Y., Xu, C., and Bu, C., A note on linear combinations of an idempotent matrix and a tripotent matrix, J. Appl. Math. Informatics, 27 (5-6), 1493-1499, 2009] and Theorem 2.2 in [2][Özdemir H., Sarduvan M., Özban A.Y., Güler N., On idempotency and tripotency of linear combinations of two commuting tripotent matrices, Appl. Math. Comput., 207 (1), 197-201, 2009] are reconsidered in different ways under the condition that the matrices involved in the linear combination are commutative. Thus, it is seen that there are some missing results in Theorem 2 in [1]. Then, by considering the obtained results and doing some detailed investigations, it is given a new characterization, without any restriction on the involved matrices except for commutativity, of a linear combination of an idempotent and a tripotent matrix that commute. KW - Idempotent matrix KW - tripotent matrix KW - linear combination KW - commutativity N2 - Bu çalışmada ilk olarak [1][Yao, H., Sun, Y., Xu, C., and Bu, C., A note on linear combinations of an idempotent matrix and a tripotent matrix, J. Appl. Math. Informatics, 27 (5-6), 1493-1499, 2009]’deki Teorem 2 ve [2]([Özdemir H., Sarduvan M., Özban A.Y., Güler N., On idempotency and tripotency of linear combinations of two commuting tripotent matrices, Appl. Math. Comput., 207 (1), 197-201, 2009]’deki Teorem 2.2, lineer kombinasyonda içerilen matrislerin değişmeli olması koşulu altında farklı tarzlarda yeniden ele alınmaktadır. Böylece, [1]’deki Teorem 2’de bazı eksik sonuçların mevcut olduğu görülmüştür. Daha sonra elde edilen sonuçları göz önüne alarak ve bazı detaylı incelemeler yaparak, değişmeli bir idempotent ve bir tripotent matrisin bir lineer kombinasyonunun, içerilen matrisler üzerinde değişmelilik dışında herhangi bir kısıtlama olmaksızın, yeni bir karakterizasyonu verilmektedir. CR - Yao, H., Sun, Y., Xu, C., and Bu, C., A note on linear combinations of an idempotent matrix and a tripotent matrix, Journal of Applied Mathematics and Informatics, 27, 1493-1499, (2009). Özdemir, H., Sarduvan, M., Özban, A.Y., and Güler, N., On idempotency and tripotency of linear combinations of two commuting tripotent matrices, Applied Mathematics and Computation, 207 1, 197-201, (2009). CR - Baksalary, J.K. and Baksalary, O.M., Idempotency of linear combinations of two idempotent matrices, Linear Algebra and its Applications, 321, 1, 3-7, (2000). CR - Baksalary, J.K., Baksalary, O.M., and Styan, G.P.H., Idempotency of linear combinations of an idempotent matrix and a tripotent matrix, Linear Algebra and its Applications, 354, 21-34, (2002). CR - Özdemir, H. and Özban, A.Y., On idempotency of linear combinations of idempotent matrices, Applied Mathematics and Computation, 159, 439-448, (2004). CR - Baksalary, J.K., Baksalary, O.M., and Özdemir, H., A note on linear combinations of commuting tripotent matrices, Linear Algebra and its Applications, 388, 45-51, (2004). CR - Benítez, J. and Thome, N., Idempotency of linear combinations of an idempotent matrix and a t-potent matrix that commute, Linear Algebra and its Applications, 403, 414-418, (2005). CR - Benítez, J. and Thome, N., Idempotency of linear combinations of an idempotent matrix and a t-potent matrix that do not commute, Linear and Multilinear Algebra, 56, 6, 679-687, (2008). CR - Sarduvan, M. and Özdemir, H., On linear combinations of two tripotent, idempotent and involutive matrices, Applied Mathematics and Computation, 200, 401-406, (2008). CR - Uç, M., Özdemir, H., and Özban, A.Y., On the quadraticity of linear combinations of quadratic matrices, Linear and Multilinear Algebra, 63, 6, 1125-1137, (2015). CR - Uç, M., Petik, T., and Özdemir, H., The generalized quadraticity of linear combinations of two commuting quadratic matrices, Linear and Multilinear Algebra, 64, 9, 1696-1715, (2016). CR - Baksalary, O.M., Idempotency of linear combinations of three idempotent matrices, two of which are disjoint, Linear Algebra and its Applications, 388, 67-78, (2004). CR - Baksalary O.M and Benítez, J., Idempotency of linear combinations of three idempotent matrices, two of which are commuting, Linear Algebra and its Applications, 424, 320-337, (2007). CR - Petik, T., Uç, M., Özdemir, H., Generalized quadraticity of linear combination of two generalized quadratic matrices, Linear and Multilinear Algebra, 63, 2430-2439, (2015). UR - https://doi.org/10.25092/baunfbed.680775 L1 - https://dergipark.org.tr/en/download/article-file/946247 ER -