@article{article_684861, title={Sigara Kullanma Durumunun Çoklu Fizyolojik Ölçümler Ve Makine Öğrenmesi Teknikleri Kullanılarak Tahmini}, journal={Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi}, volume={23}, pages={55–69}, year={2021}, DOI={10.21205/deufmd.2021236705}, author={Eken, Aykut and Çalışkan, Şevket and Çivilibal, Soner and Tosun, Pinar Deniz}, keywords={smoking status, photopletsmography, ECG, respiration, machine learning, classification}, abstract={Sigara kullanımı toplumlarda gerek sağlık gerek ekonomik açıdan ciddi kayıplara sebep olmaktadır. Kullanım seviyesinin ölçümünde bir altın standart bulunmamasına rağmen, Fagerstörm Nikotin Bağımlılık Testi (Fagerstörm Test for Nicotine Dependency – FTND) ve HONC (Hooked on Nicotine Checklist) gibi geleneksel testler ve çeşitli nörogörüntüleme yaklaşımları kişinin sigara içme durumunun seviyesi hakkında bir bilgi vermektedir. Bu çalışmada, objektif bir veri olan fizyolojik parametrelerin subjektif bir veri olan bağımlılık testlerinin yerine kullanım seviye tespitinde yeni bir yaklaşım olarak kullanılabileceğini göstermek amaçlanmıştır. Bu amaçla çeşitli seviyelerdeki sigara kullanıcılarından fizyolojik sinyaller (elektrokardiyogram (EKG), Solunum ve Fotopletismografi) toplanmıştır. Bu sinyallerden elde edilen çeşitli öz niteliklerden makine öğrenmesi yaklaşımları kullanılarak katılımcılar düşük seviye veya yüksek seviye olarak tahmin edilmeye çalışılmıştır. Çalışma için önceden FTND bağımlılık testine giren değişik kullanım seviyelerinde 95 katılımcı alınıp bu kişilerden sırasıyla 50 saniyelik EKG, solunum ve fotopletismografi sinyalleri alınmıştır. Öznitelik çıkarımından sonra, parametre optimizasyonu ve sınıflandırma içeren 10 kat içiçe çapraz geçerlilik gerçekleştirilmiştir. Yapılan sınıflandırma sonucunda destek vektör makinesi kullanılarak %93, diskriminant analizi kullanılarak ise %91 doğruluk başarımı elde edilmiştir. Bu sonuçlar, yukarıda belirtilen fizyolojik parametrelerin makine öğrenmesi algoritmaları aracılığı ile sigara kullanım durumunun tespitinde kullanılabileceğini göstermektedir.}, number={67}, publisher={Dokuz Eylul University}, organization={Düzce Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü}