TY - JOUR T1 - Implementation of Collaborative Multi-Robot System Carrying Cargos Autonomously AU - Duran, Fecir AU - Budak, Emrah AU - Özarslan Yatak, Meral AU - Bayır, Raif PY - 2021 DA - January DO - 10.29137/umagd.686123 JF - International Journal of Engineering Research and Development JO - IJERAD PB - Kirikkale University WT - DergiPark SN - 1308-5506 SP - 55 EP - 65 VL - 13 IS - 1 LA - en AB - The paper presents implementation of collaborative multi-robot system for carrying cargo autonomously. Multi-robot systems are especially used to carry cargos to target place in the shortest way in the shortest duration by path planning. This system is composed of two robots called as Leader and Assistant. They sense the cargo with load cells on themselves and carry it to the target place. After determination of the cargo, if its weight is in the limits of the weights for Leader, it pushes the cargo by itself and Assistant waits on standby mode. If the cargo is higher than carrying capacity of Leader, Assistant is called and both push it to the target. Detecting cargos task is performed with a method similar to method of calculating fitness value. Carrying cargos task was performed by finding the shortest way with curve fitting algorithm. Carrying cargos with multi-robots by using curve fitting is the most practical solution. Consequently, reducing the route by 13.7% could be provided successfully by this algorithm instead of line following method and so energy saving was ensured. Task performance rate for carrying the cargo to the target place is achieved up to 90% for stand-alone and cooperative operation. KW - Multi-robot systems KW - path planning KW - curve fitting CR - Abdi H., Black T. & Nahavandi S. (2011). An adjustable force field for multiple robot mission and path planning. In Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, USA, 1950–1955. doi:10.1109/ICSMC.2011.6083957 CR - Adrian L. R. & Ribickis L. (2013). Fuzzy logic analysis of photovoltaic data for obstacle avoidance or mapping robot. Elektronika Ir Elektrotechnika, 19(1), 1392-1215. doi:10.5755/j01.eee.19.1.3243 CR - Alotaibi E. T. S. & Al-Rawi H. (2016). Push and spin: a complete multi-robot path planning algorithm. In Proceedings of the 14th International Conference on Control, Automation, Robotics and Vision, Phukhet, Thailand, 13-15. doi:10.1109/ICARCV.2016.7838836 CR - Berglund T., Brodnik A., Jonsson H., Staffanson M. Soderkvist I. (2010). Planning smooth and obstacle-avoiding B-spline paths for autonomous mining vehicles. IEEE Transactions on Automation Science and Engineering,7(1), 167-172. doi:10.1109/TASE.2009.2015886 CR - Ganeshmurthy M. S. &vSuresh.G. R. (2015). Path planning algorithm for autonomous mobile robot in dynamic environment, In Proceedings of the 3rd International Conference on Signal Processing, Communication and Networking, Chennai, India. doi:10.1109/ICSCN.2015.7219901 CR - Gong H., Yin C., Zhang, F., Hou Z., Zhang R. (2017). Path planning algorithm for unmanned vehicles based on target-oriented rapidly-exploring random tree. In Proceedings of the 11th Asian Control Conference (ASCC), Gold Coast, Australia, 760-765. doi:10.1109/ASCC.2017.8287266 CR - Graetz G. & Michaels G. (2018). Robots at work. Review of Economics and Statistics, 100(5), 753-768. doi:10.1162/rest_a_00754 CR - Howard A. (2006). Multi-robot simultaneous localization and mapping using particle filters. International Journal of Robotics Research, 25(12), 1243–1256. doi:10.1177/0278364906072250 CR - Hussein A., Adel M., Bakr M., Shehata O. M. & Khamis A. (2014). Multi-robot task allocation for search and rescue missions, Journal of Physics: Conference Series, 570: 1–10. doi:10.1088/1742-6596/570/5/052006 CR - Kermorgant O. (2018). A magnetic climbing robot to perform autonomous welding in the shipbuilding industry. Robotics and Computer-Integrated Manufacturing, 53, 178-186. doi:10.1016/j.rcim.2018.04.008 CR - Kim H., Kim D., Kim H., Shin J.U. & Myung H. (2016). An extended any-angle path planning algorithm for maintaining formation of multi-agent jellyfish elimination robot system. International Journal of Control, Automation, and Systems, 14(2), 598–607. doi:10.1007/s12555-014-0349-0. CR - Koch P., May S., Schmidpeter M., Kuhn M., Pfitzner C., Merkl C., Koch R., Fees M., Martin J., Ammon D. & Nuchter A. (2016). Multi-robot localization and mapping based on signed distance functions. Journal of Intelligent & Robotic Systems, 83, 409–428. doi:10.1007/s10846-016-0375-7 CR - Macwan A., Vilela J., Nejat G.& Benhabib B. (2016). Multi-robot deployment for wilderness search and rescue. International Journal of Robotics and Automation, 31(1), 45-51. doi:10.2316/Journal.206.2016.1.206-4366 CR - Madhu B., Sakkaravarthi R., Singh G. M.; Diya R. &. Jha D. K. (2017). Modeling, simulation and mechatronics design of a wireless automatic fire fighting surveillance robot. Defence Science Journal, 67(5), 572–580. doi:10.14429/dsj.67.10237 CR - Marjovi A. & Marques L. (2011). Multi-robot olfactory search in structured environments. Robotics and Autonomous Systems, 59,11867–11881. doi:10.1016/j.robot.2011.07.010 CR - Moradi B. (2019). Multi-objective mobile robot path planning problem through learnable evolution model. Journal of Experimental & Theoretical Artificial Intelligence, 31(2), 325-348. doi: 10.1080/0952813X.2018.1549107 CR - Nagy I. (2014). From exploring to optimal path planning: considering error of navigation in multi-agent mobile robot domain. Acta Polytechnica Hungarica, 11(6), 39-55. doi:10.12700/aph.11.06.2014.06.3 CR - Nazarahari M., Khanmirza E., Doostie S. (2019). Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm. Expert Systems with Applications, 115, 106-120. doi:10.1016/j.eswa.2018.08.008 CR - Özarslan Yatak M., Göktaş B. & Duran F. (2018). Design and implementation of Android-based autonomous human tracking vehicle. International Journal of Informatics Technologies. 11(2), 157-162. doi:10.17671/gazibtd.340566 CR - Prabuwono A. S., Burhanuddin M. A. & Said S. M. (2008). Autonomous contour tracking using staircase method for industrial robot. In Proceedings of the 10th International Conference on Control Automation Robotics and Vision, Hanoi, Vietnam, 2272–2276. doi:10.1109/ICARCV.2008.4795886 CR - Saeedi S., Paull L., Trentini M & Li H. (2011). Neural network-based multiple robot simultaneous localization and mapping. IEEE Transactions on Neural Networks, 22(12), 2376–2387. doi:10.1109/TNN.2011.2176541 CR - Saeedi S., Paull L., Trentini M, & Li H. (2015). Occupancy grid map merging for multiple robot simultaneous localization and mapping. International Journal of Robotics and Automation, 149-157. doi:10.2316/Journal.206.2015.2.206-4028 CR - Seçkin A.Ç., Özek A. & Karpuz C. Çoklu robotlarda işbirlikli davranışların karşılaştırılması ve bulanık mantık yaklaşımı. Politeknik, Erken Görünüm. doi:10.2339/politeknik.481177 CR - Sun D., Kleiner A. & Wendt T.M. (2008). Multi-robot range-only SLAM by active sensor nodes for urban search and rescue. In Proceedings of the 12th annual RoboCup International Symposium, Suzhou, China 318–330. doi:10.1007/978-3-642-02921-9_28 CR - Thabit S., Mohades A. (2019). Multi-robot path planning based on multi-objective particle swarm optimization. IEEE Access,7, 2138-2147. doi:10.1109/ACCESS.2018.2886245 CR - Thor J., Schultz U. P. & Kuhrmann M. (2015). On the use of safety certification practices in autonomous field robot software development: A systematic mapping study. In Proceedings of the 16th International Conference on Product-Focused Software Process Improvement, Bolzano, Italy, 335–352. doi:10.1007/978-3-319-26844-6_25 CR - Tominaga A.; Hayashi E. & Sasao T. (2017). Localization method of autonomous moving robot for forest industry. In Proceedings of the International Conference on Artificial Life and Robotics, Miyazaki, 376-379. UR - https://doi.org/10.29137/umagd.686123 L1 - https://dergipark.org.tr/en/download/article-file/960325 ER -