TY - JOUR T1 - Coding Matrices for the Semi-Direct Product Groups AU - Alkinani, Amnah AU - Khammash, Ahmed PY - 2020 DA - December Y2 - 2020 DO - 10.33401/fujma.690424 JF - Fundamental Journal of Mathematics and Applications JO - Fundam. J. Math. Appl. PB - Fuat USTA WT - DergiPark SN - 2645-8845 SP - 109 EP - 115 VL - 3 IS - 2 LA - en AB - We shall determine the coding matrix of the semi-direct product group $ G = C_{n} \rtimes_{\phi} C_{m} $ ; $ \phi : C_{m} \longrightarrow Aut(C_{n}) $ of two cyclic groups in order to generalize the known result for the dihedral group $D_{2n}$, which is known to be a semi-direct of the two cyclic groups $C_{n} \ , \ C_{2}$. KW - Code KW - Group ring KW - Ring of matrices KW - Semi-direct product group CR - [1] R. Hamming, Error detecting and error correcting codes, The Bell Syst. Tech. J., 29 (1950), 147-160. CR - [2] F. J. MacWilliams, Codes and ideals in group algebra, Comb. Math. Appl., (1969), 317-328. CR - [3] T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math, 31(3) (2006), 319-335. CR - [4] P. Hurley, T. Hurley, Codes from zero-divisors and units in group rings, (2007), arXiv:0710.5893v1 [cs.IT]. CR - [5] M. Hamed, Constructing codes from group rings, Msc dissertation, Umm Al-Qura University, 2018. CR - [6] M. Hamed, A. Khammash, Coding matrices for GL (2, q), Fundam. J. Math. Appl., 1(2) (2018), 118-130. CR - [7] P. Hurley, T. Hurley, Block codes from matrix and group rings, Chapter 5, in Selected topics in information and coding theory, I. Woungang, S. Misra, (Eds.), World Scientific, (2010), 159-194. UR - https://doi.org/10.33401/fujma.690424 L1 - https://dergipark.org.tr/en/download/article-file/972321 ER -