TY - JOUR T1 - Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton AU - Meriç, Şemsi Eken PY - 2020 DA - June Y2 - 2020 DO - 10.37094/adyujsci.705319 JF - Adıyaman University Journal of Science JO - ADYU J SCI PB - Adıyaman University WT - DergiPark SN - 2147-1630 SP - 295 EP - 306 VL - 10 IS - 1 LA - en AB - In this paper, we study the Riemannian submersions $\pi:M\rightarrow B$ whose total manifolds admit an almost Yamabe soliton. Here, we give some necessary conditions for which any fiber of $\pi$ or $B$ are almost Yamabe soliton or Yamabe soliton. Also, we calculate the scalar curvatures of any fiber or $B$ and using them, we present the relations between the scalar curvatures of them and obtain some characterizations of such a soliton (that is, shrinking, steady or expanding). KW - Riemannian manifold KW - Riemannian submersion KW - Almost Yamabe soliton CR - [1] Hamilton, R., “The Ricci flow on surfaces”, in Mathematics and General Relativity, Contemporary Mathematics, (71), 237-361, 1988. CR - [2] Barbosa, E., Ribeiro, E., On conformal solutions of the Yamabe flow, Archiv der Mathematik, (101), 79-89, 2013. CR - [3] Cao, H.D., Sun, X., Zhang, Y., On the structure of gradient Yamabe solitons, Mathematical Research Letters, (19), 767-774, 2012. CR - [4] Chen, B.-Y., Deshmukh, S., Yamabe and quasi-Yamabe solitons on Euclidean submanifolds, Mediterranean Journal of Mathematics, (15), 194, 2018. CR - [5] Deshmukh, S., Chen, B.-Y., A Note on Yamabe solitons, Balkan Journal of Geometry and Its Applications, 23(1), 37-43, 2018. CR - [6] Ma, L., Miquel, V., Remarks on scalar curvature of Yamabe solitons, Annals of Global Analysis and Geometry, 42, 195-205, 2012. CR - [7] Neto, B.L., A note on (anti-)self dual quasi Yamabe gradient solitons, Results in Mathematics, 71, 527-533, 2017. CR - [8] Seko, T., Matea, S., Classification of almost Yamabe solitons in Euclidean spaces, Journal of Geometry and Physics, 136, 97-103, 2019. CR - [9] Falcitelli, M., Ianus, S., Pastore, A.M., Riemannian submersions and related topics, World Scientific Publishing Co. Pte. Ltd. 2004. CR - [10] Gray, A., Pseudo-Riemannian almost product manifolds and submersion, Journal of Mathematics and Mechanics, (16), 715–737, 1967. CR - [11] O'Neill, B., The fundamental equations of a Riemannian submersions, Michigan Mathematical Journal, 13, 459-469, 1966. CR - [12] Akyol, M.A., Gündüzalp, Y., Hemi-slant submersions from almost product Riemannian manifolds, Gulf Journal of Mathematics, 4(3), 15-27, 2016. CR - [13] Akyol, M.A., Gündüzalp, Y., Semi-invariant semi-Riemannian submersions, Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics, 67(1), 80-92, 2018. CR - [14] Eken Meriç, Ş., Kılıç, E., Riemannian submersions whose total manifolds admitting a Ricci soliton, International Journal of Geometric Methods in Modern Physics, 16(12), 1950196 (12 pages), 2019. CR - [15] Özdemir, F., Sayar, C., Taştan, H.M., Semi-invariant submersions whose total manifolds are locally product Riemannian, Quaestiones Mathematicae, 40(7), 909-926, 2017. CR - [16] Besse, A.L., Einstein manifolds, Springer-Verlag, Berlin, Heildelberg, New York, 1987. UR - https://doi.org/10.37094/adyujsci.705319 L1 - https://dergipark.org.tr/en/download/article-file/1167469 ER -