TY - JOUR T1 - $f$-Asymptotically $\mathcal{I}_{\sigma\theta}$-Equivalence of Real Sequences AU - Dundar, Erdinç AU - Akın, Nimet PY - 2020 DA - April Y2 - 2020 DO - 10.33187/jmsm.710084 JF - Journal of Mathematical Sciences and Modelling PB - Mahmut AKYİĞİT WT - DergiPark SN - 2636-8692 SP - 32 EP - 37 VL - 3 IS - 1 LA - en AB - In this manuscript, we present the ideas of asymptotically $[{\mathcal{I}_{\sigma\theta}}]$-equivalence, asymptotically ${\mathcal{I}_{\sigma\theta}}(f)$-equivalence, asymptotically $[{\mathcal{I}_{\sigma\theta}}(f)]$-equivalence and asymptotically ${\mathcal{I}(S_{\sigma\theta})}$-equivalence for real sequences. In addition to, investigate some connections among these new ideas and we give some inclusion theorems about them. KW - Asymptotically equivalence KW - Lacunary invariant equivalence KW - $\mathcal{I}$-equivalence KW - Modulus function CR - [1] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244. CR - [2] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375. CR - [3] P. Kostyrko, T. Salat, W. Wilczy´nski, I-Convergence, Real Anal. Exchange, 26(2) (2000), 669–686. CR - [4] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J., 30 (1963), 81–94. CR - [5] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1972), 104–110. CR - [6] M. Mursaleen, O. H. H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett., 22 (2009), 1700–1704. CR - [7] M. Mursaleen, On finite matrices and invariant means, Indian J. Pure and Appl. Math., 10 (1979), 457–460. CR - [8] E. Savas, Some sequence spaces involving invariant means, Indian J. Math., 31 (1989), 1–8. CR - [9] E. Savas, Strong s-convergent sequences, Bull. Calcutta Math., 81 (1989), 295–300. CR - [10] E. Savas, On lacunary strong s-convergence, Indian J. Pure Appl. Math., 21(4) (1990), 359–365. CR - [11] F. Nuray, E. Savas, Invariant statistical convergence and A-invariant statistical convergence, Indian J. Pure Appl. Math., 10 (1994), 267–274. CR - [12] N. Pancaroglu, F. Nuray, Statistical lacunary invariant summability, Theor. Math. Appl., 3(2) (2013), 71–78. CR - [13] E. Savas, F. Nuray, On s-statistically convergence and lacunary s-statistically convergence, Math. Slovaca, 43(3) (1993), 309–315. CR - [14] F. Nuray, H. G¨ok, U. Ulusu, Is -convergence, Math. Commun., 16 (2011), 531–538. CR - [15] U. Ulusu, F. Nuray, Lacunary Is -convergence, (submitted). CR - [16] M. Marouf, Asymptotic equivalence and summability, Int. J. Math. Math. Sci., 16(4) (1993), 755-762. CR - [17] R. F. Patterson, E. Savas, On asymptotically lacunary statistically equivalent sequences, Thai J. Math., 4(2) (2006), 267–272. CR - [18] E. Savas, R. F. Patterson, s-asymptotically lacunary statistical equivalent sequences, Cent. Eur. J. Math., 4(4) (2006), 648-655. CR - [19] U. Ulusu, Asymptotoically lacunary Is -equivalence, Afyon Kocatepe University Journal of Science and Engineering, 17 (2017), 899-905. CR - [20] U. Ulusu, Asymptotoically ideal invariant equivalence, Creat. Math. Inform., 27 (2018), 215-220. CR - [21] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5 (1953), 29-49. CR - [22] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc. 100 (1986), 161–166. CR - [23] S. Pehlivan, B. Fisher, Some sequences spaces defined by a modulus, Math. Slovaca, 45 (1995), 275-280. CR - [24] V. Kumar, A. Sharma, Asymptotically lacunary equivalent sequences defined by ideals and modulus function, Math. Sci., 6(23) (2012), 5 pages. CR - [25] E. Dundar and N. Pancaroğlu Akın, f -Asymptotically Is -Equivalence of Real Sequences, Konuralp J. Math., (in press). CR - [26] M. Mursaleen, Matrix transformation between some new sequence spaces, Houston J. Math., 9 (1983), 505–509. UR - https://doi.org/10.33187/jmsm.710084 L1 - https://dergipark.org.tr/en/download/article-file/1069241 ER -