@article{article_710093, title={Comparison of the inner and outer rotor flux switching permanent magnet machines in contrast to electromagnetic characteristics}, journal={Avrupa Bilim ve Teknoloji Dergisi}, pages={21–26}, year={2020}, DOI={10.31590/ejosat.araconf4}, author={Çetin, Emrah}, keywords={Flux switching machine,outer rotor machine,permanent magnet motors,finite element analysis,electric machinery}, abstract={Current technology developments also guide the works in the field of electrical machines. That’s why researchers are working on new machine types as well as performance improvements of traditional machines. Flux-switching permanent magnet machines are also one of the novel electrical machine types developed in the literature. The working principle and machine design are similar to reluctance machines. The rotor side has the same structure as reluctance machines. However, in flux-switching permanent magnet machines, there are magnets embedded in the windings on the stator side between the two stator slots. Although there are some difficulties in the production process, there are several advantages brought by this design. The permanent magnet poles in the stator are guided to support the path through which the magnetic flux flows through the stator core. In this way, the opposite electromotive force waveform occurs as a sinusoidal. This feature put the flux-switching permanent magnet machines one step forward. Since there is no magnet in the rotor, it is more robust than other (surface) permanent magnet machines. It is convenient for high speed applications. In this article, four flux-switching permanent magnet machine designs are compared in terms of their electromagnetic properties. The magnetic flux density characteristics were evaluated by three-dimensional finite elements method by performing static electromagnetic analysis of four machines with inner rotor and outer rotor with the same number of slots and poles, whose permanent magnet volumes were taken equally. While making comparisons, it was especially paid attention to be equal to the machine dimensions. While two of the four designs designed were realized for comparison purposes, others were developed for investgation. In proposed flux-switching permanent magnet machines, air ducts called flux barriers are opened into the teeth on the rotor side. In this study, the behavior of these air ducts was analyzed using three dimensional finite element analysis data. As a result, the advantages and disadvantages of designs with air ducts were evaluated in terms of machine performance.}, publisher={Osman SAĞDIÇ}