TY - JOUR T1 - On the symmetric polynomials in the variety of Grassmann algebras TT - Grassmann cebirleri sınıfında simetrik polinomlar üzerine AU - Akdoğan, Nazan PY - 2021 DA - December DO - 10.18185/erzifbed.732117 JF - Erzincan University Journal of Science and Technology PB - Erzincan Binali Yildirim University WT - DergiPark SN - 2149-4584 SP - 907 EP - 913 VL - 14 IS - 3 LA - en AB - 𝐾 karakteristiği sıfır olan bir cisim ve 𝐿, Grassmann cebirleri tarafından üretilen varyetede, 𝐾 cismi üzerinde rankı 2 olan birleşmeli cebir olsun. Bu çalışmada, 𝐿 cebirinin 𝐿𝑆2 simetrik polinomlar alt cebiri incelenmiş ve 𝐿𝑆2 için sonlu bir üreteç kümesi verilmiştir. KW - PI-algebra KW - Grassmann algebras KW - symmetric polynomial N2 - Let K be a field of characteristic zero, and L be the associative algebra of rank 2 over K, in the variety generated by Grassmann algebras. In this paper we study the subalgebra L^(S_2 ) of symmetric polynomials in the algebra L, and give a finite generating set for L^(S_2 ). CR - Cox, D., Little, J. and O’Shea, D. (2015). “Ideals Varieties, and Algorithms 4th ed.”, Springer, New York, 345-352. CR - Drensky, V. (1996). “Free Algebras and PI-Algebras”, Springer, Singapore, 12-51. CR - Krakovski, D. and Regev, A. 1973. “The Polynomial Identities of the Grassmann Algebra”, Trans. Amer. Math. Soc., 181, 429-438. CR - Latyshev, V.N., 1976. “Partially Ordered Sets and Nonmatrix Identities of Associative Algebras” Algebr. Log., 15(1), 34-45. CR - Strumfels, B. (2008). “Algorithms in Invariant Theory 2nd ed.”, Springer-Verlag, Wien, 2-6. CR - van der Waerden, B.L. (1949). “Modern Algebra”, F. Ungar, New York, 78-82. UR - https://doi.org/10.18185/erzifbed.732117 L1 - https://dergipark.org.tr/en/download/article-file/1087205 ER -