TY - JOUR T1 - An approach to pre-separation axioms in neutrosophic soft topological spaces AU - Açıkgöz, Ahu AU - Esenbel, Ferhat PY - 2020 DA - December Y2 - 2020 DO - 10.31801/cfsuasmas.749946 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 1389 EP - 1404 VL - 69 IS - 2 LA - en AB - In this study, we introduce the concept of neutrosophic soft pre-open (neutrosophicsoft pre-closed) sets and pre-separation axioms in neutrosophic soft topological spaces. Inparticular, the relationship between these separation axioms are investigated. Also, we givea new definition for neutrosophic soft topological subspace and define neutrosophic soft preirresolute soft and neutrosophic pre irresolute open soft functions. KW - Neutrosophic pre open soft set KW - neutrosophic soft pre interior point KW - neutrosophic soft pre cluster point KW - neutrosophic soft pre-separation axioms KW - neutrosophic soft subspace CR - Al-shami, T.M., Kocinac, Lj.D.R., The equivalence between the enriched and extended soft topologies, Appl. Comput. Math., 18 (2) (2019), 149-162. CR - Aras, C.G., Sonmez, A., Çakalli, H., An approach to soft functions, J. Math. Anal., 8 2 (2017), 129-138. CR - Aras, C.G., Ozturk, T.Y., Bayramov, S., Separation axioms on neutrosophic soft topological spaces, Turk. J. Math., 43 (2019), 498-510. CR - Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96. CR - Bayramov, S., Gunduz, C., On intuitionistic fuzzy soft topological spaces, TWMS J. Pure Appl. Math., 5 (2014), 66-79. CR - Bayramov, S., Gunduz, C., A new approach to separability and compactness in soft topological spaces, TWMS J Pure Appl. Math., 9 (2018), 82-93. CR - Bera, T., Mahapatra, N.K., On neutrosophic soft function, Annals of Fuzzy Mathematics and Informatics, 12 (1) (July 2016), 101-119. CR - Bera, T., Mahapatra, N.K., Introduction to neutrosophic soft topological space, Opsearch, 54 (2017), 841-867. CR - Cagman, N., Karatas, S., Enginoglu, S., Soft topology, Comput Math. Appl., 62 (2011), 351-358. CR - Çakalli, H., Das, P., Fuzzy compactness via summability, Appl. Math. Lett., 22 (11) (2009), 1665-1669. CR - Coskun, A.E., Aras, C.G., Cakalli, H., Sonmez, A., Soft matrices on soft multisets in an optimal decision process, AIP Conference Proceedings, 1759, 1, 020099 (2016); doi: 10.1063/1.4959713. CR - Deli, I., Broumi, S., Neutrosophic soft relations and some Properties, Ann. Fuzzy Math. Inform, 9 (2015), 169-182. CR - Gunduz, C., Bayramov, S., On the Tietze extension theorem in soft topological spaces, Proceedings of the Institute of Mathematics and Mechanics of the National Academy of Sciences of Azerbaijan, 43 (2017), 105-115. CR - Hussain, S., On some properties of intuitionistic fuzzy soft boundary, Commun. Fac. Sci. Univ. Ank. Series A1, 69 (2) (2020), 39-50. CR - Maji, P.K., Neutrosophic soft set, Ann. Fuzzy Math. Inform, 5 (2013), 157-168. CR - Molodtsov, D., Soft set theory-first results, Comput Math. Appl., 37 (1999), 19-31. CR - Pei, D., Miao, D., From soft sets to information systems, in: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang (Eds.), Proceedings of Granular Computing, in: IEEE 2 (2005), 617-621. Salma, A.A., Alblowi, S.A., Neutrosophic set and neutrosophic topological spaces, IOSR J. Math., 3 (2012), 31-35. CR - Shabir, M., Naz, M., On soft topological spaces, Comput Math. Appl., 61 (2011), 1786-1799. CR - Smarandache, F., Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math., 24 (2005), 287-297. CR - Xiao, Z., Chen, L., Zhong, B., Ye, S., Recognition for soft information based on the theory of soft sets, in: J. Chen (Ed.), Proceedings of ICSSSM-05, 2 (2005), 1104-1106. UR - https://doi.org/10.31801/cfsuasmas.749946 L1 - https://dergipark.org.tr/en/download/article-file/1142751 ER -