TY - JOUR T1 - SOME RESULTS ON A SUBCLASS OF HARMONIC MAPPINGS OF ORDER ALPHA AU - Varol, D. AU - Aydogan, Melike AU - Owa, S. PY - 2014 DA - June JF - TWMS Journal of Applied and Engineering Mathematics JO - JAEM PB - Işık University Press WT - DergiPark SN - 2146-1147 SP - 104 EP - 109 VL - 4 IS - 1 LA - en AB - Let SH be the class of harmonic mappings defined by SH = { f = h z + g z | h z = z + ∑∞ n=2 anz n , g z = b1z + ∑∞ n=2 bnz n , b1 < 1 } where h z and g z are analytic. Additionally f z ∈ SH α ⇔ zh′ z − zg′ z h z + g z − 1 − b1 1 + b1 < 1 − b1 1 + b1 − α, z ∈ U, 0 6 α < 1 − b1 1 + b1 In the present work, by considering the analyticity of the functions defined by R. M. Robinson [7], we discuss the applications to the harmonic mappings. KW - Harmonic Mappings KW - Subordination principle KW - Distortion theorem CR - Clunie and T. Sheil-Small, Harmonic Univalent functions, Annales Academiae Scientiarum Fennicae, Series A, Vol. 9, pp. 3-35, (1984). CR - Duren, P. , Harmonic Mappings in the Plane, Vol. 156 of Cambridge Tracts in Mathematics, Cam- bridge University Press, Cambridge UK, (2004). CR - Goodman A. W. , Univalent Functions, Volume I and Volume II, Mariner publishing Company INC, Tampa Florida, (1983). CR - R.J. Libera, Some Radius of Convexity Problem, Duke Math. J.31(1964) 143-157. CR - W. Janowski, Some extremal problems for certain families of analytic functions I, Annales Polinici Mathematici 27, (1973), 298-326. CR - M. A. Nasr and M. K. Aouf, Starlike functions of complex order, Jour. of Natural science and Math- ematics vol. 25, No.1, (1985), 1-12. CR - Robinson, R. M . , Univalent majorants, Trans. Amer. Math. Soc. 61 (1947), 1-35. UR - https://dergipark.org.tr/en/pub/twmsjaem/article/761396 L1 - https://dergipark.org.tr/en/download/article-file/1179897 ER -