TY - JOUR T1 - Flow Exergy as a Lagrangian for the Navier-Stokes Equations for Incompressible Flow AU - Sciubba, Enrico PY - 2004 DA - September JF - International Journal of Thermodynamics PB - Uluslararası Uygulamalı Termodinamik Derneği İktisadi İşletmesi WT - DergiPark SN - 1301-9724 SP - 115 EP - 122 VL - 7 IS - 3 LA - en AB - A novel variational derivation of the Navier-Stokes equations for incompressible flows is presented and discussed. The Lagrangian density is obtained from the exergy balance equation written for both the (Lagrangian) steady and quasi-stationary isothermal flows of an incompressible fluid. The exergy of a fluid mass (composed of a kinetic, a pressure-work, a diffusive, and a dissipative portion, the latter being the result of viscous irreversibility) is derived first, and it is then shown that a formal minimisation of the exergy variation (i.e. destruction) generates, without recurring to “local potentials”, the Navier-Stokes equations of motion under the given assumptions. The acceleration being held constant, the proposed variational method can be classified as a “restricted” principle.The problem is also briefly discussed both in its historical perspective and in its possible formal and practical implications. KW - Navier-Stokes variational KW - Navier-Stokes Lagrangian KW - Exergy-based Lagrangian UR - https://dergipark.org.tr/en/pub/ijot/issue//76673 L1 - https://dergipark.org.tr/en/download/article-file/65647 ER -