TY - JOUR T1 - Existence and Uniqueness Results of HadamardFractional Volterra-Fredholm Integro-Differential Equations AU - Hamoud, Ahmed AU - Sharif, Abdulrahman AU - Ghadle, Aishwary K. AU - Ghadle, Kirtiwant PY - 2021 DA - April Y2 - 2020 JF - Konuralp Journal of Mathematics JO - Konuralp J. Math. PB - Mehmet Zeki SARIKAYA WT - DergiPark SN - 2147-625X SP - 143 EP - 147 VL - 9 IS - 1 LA - en AB - In this paper, we establish some new conditions for the existence and uniqueness of solutions for a class of nonlinear Hadamard fractional Volterra-Fredholm integro-differential equations with initial conditions. The desired results are proved by using Arzela-Ascoli theorem aid of fixed point theorems due to Banach and Krasnoselskii in Banach spaces. KW - Volterra-Fredholm integro differential equation KW - Hadamard fractional derivative KW - Fixed point method CR - [1] S. Abbas, M. Benchohra, J. Lazreg and Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability, Chaos, Solitons & Fractals, Vol:102, (2017), 47-71. CR - [2] S. Abbas, M. Benchohra, J. Lazreg and Y. Zhou, Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Advances in Difference Equations, Vol:180, (2017), 1-14. CR - [3] B. Ahmad, S. Ntouyas and J. Tariboon, A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory, Applied Mathematics Letters, Vol:52, (2016), 9-14. CR - [4] P. Butzer, A. Kilbas and J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl. Vol:269, (2002), 387-400. CR - [5] B. Ahmad and S. Ntouyas, Initial-value problems for hybrid Hadamard fractional differential equations, Electronic Journal of Differential Equations, Vol:2014, No. 161 (2014), 1-8. CR - [6] L. Dawood, A. Hamoud and N. Mohammed, Laplace discrete decomposition method for solving nonlinear Volterra-Fredholm integro-differential equations, Journal of Mathematics and Computer Science, Vol:21, No.2 (2020), 158-163. CR - [7] J. Hadamard, Essai sur letude` des fonctions donnees` par leur developpement` de Taylor, J. Mat. Pure Appl. Ser. Vol:4, No.8 (1892), 101-186. CR - [8] A. Hamoud, Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro-differential equations, Advances in the Theory of Nonlinear Analysis and its Application, Vol:4, No.4 (2020), 321-331. CR - [9] A. Hamoud, N. Mohammed and K. Ghadle, Existence and uniqueness results for Volterra-Fredholm integro-differential equations, Advances in the Theory of Nonlinear Analysis and its Application, Vol:4, No.4 (2020), 361-372. CR - [10] A. Hamoud and K. Ghadle, The approximate solutions of fractional Volterra-Fredholm integro-differential equations by using analytical techniques, Probl. Anal. Issues Anal., Vol:7 (25), No.1 (2018), 41-58. CR - [11] A. Hamoud and K. Ghadle, Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations, J. Math. Model., Vol:6, No. 1 (2018), 91-104. CR - [12] A. Hamoud and K. Ghadle, Usage of the homotopy analysis method for solving fractional Volterra-Fredholm integro-differential equation of the second kind, Tamkang J. Math. Vol:49, No.4 (2018), 301-315. CR - [13] A. Hamoud and K. Ghadle, Existence and uniqueness of solutions for fractional mixed Volterra-Fredholm integro-differential equations, Indian J. Math. Vol:60, No.3 (2018), 375-395. CR - [14] A. Hamoud, K. Ghadle and S. Atshan, The approximate solutions of fractional integro-differential equations by using modified Adomian decomposition method, Khayyam J. Math. Vol:5, No.1 (2019), 21-39. CR - [15] A. Hamoud and K. Ghadle, Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, J. Appl. Comput. Mech. Vol:5, No.1 (2019), 58-69. CR - [16] K. Karthikeyan and J. Trujillo, Existence and uniqueness results for fractional integro-differential equations with boundary value conditions, Commun. Nonlinear Sci. Numer. Simulat., Vol:17, (2012), 4037-4043. CR - [17] A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc. Vol:38, (2001), 1191-1204. CR - [18] A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., Elsevier, Amsterdam, Vol:204, 2006. CR - [19] V. Lakshmikantham and M. Rao, Theory of Integro-Differential Equations, Gordon & Breach, London, 1995. CR - [20] K. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993. CR - [21] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993. CR - [22] J. Wang, Y. Zhou and M. Medved, Existence and stability of fractional differential equations with Hadamard derivative, Topological Methods in Nonlinear Analysis, Vol:41, No.1 (2013), 113-133. CR - [23] J. Wu and Y. Liu, Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spaces, Electronic Journal of Differential Equations, Vol:2009, (2009), 1-8. CR - [24] J. Wu and Y. Liu, Existence and uniqueness results for fractional integro-differential equations with nonlocal conditions, 2nd IEEE International Conference on Information and Financial Engineering, (2010), 91-94. CR - [25] Y. Zhou, Basic Theory of Fractional Differential Equations, Singapore: World Scientific, 2014. UR - https://dergipark.org.tr/en/pub/konuralpjournalmath/issue//778724 L1 - https://dergipark.org.tr/en/download/article-file/1233738 ER -