TY - JOUR T1 - A graph associated to a commutative semiring AU - Khoramdel, Mehdi AU - Atani, Shahabaddin Ebrahimi AU - Dolatı Pısh Hesarı, Saboura AU - Nıkmard Rostam Alıpour, Mahsa PY - 2021 DA - December Y2 - 2021 DO - 10.31801/cfsuasmas.783398 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 984 EP - 996 VL - 70 IS - 2 LA - en AB - Let RR be a commutative finite semiring with nonzero identity and HH be an arbitrary multiplicatively closed subset RR. The generalized identity-summand graph of RR is the (simple) graph GH(R)GH(R) with all elements of RR as the vertices, and two distinct vertices xx and yy are adjacent if and only if x+y∈Hx+y∈H. In this paper, we study some basic properties of GH(R)GH(R). Moreover, we characterize the planarity, chromatic number, clique number and independence number of GH(R)GH(R). KW - I-semiring KW - planar graphs KW - clique number KW - chromatic number KW - independence number CR - Afkhami, M., Barati, Z., Khashyarmanesh, K., A graph associated to a lattice, Ricerche Mat., 63 (2014), 67–78. https://doi.org/10.1007/s11587-013-0164-6 CR - Anderson, D. F., Livingston, P. S., The zero-divisor graph of a commutative rings, J. Algebra, 217 (1999), 434-447. https://doi.org/10.1006/jabr.1998.7840 CR - Anderson, D. F., Badawi, A., The total graph of a commutative ring, J. Algebra, 320(7) (2008), 2706–2719. https://doi.org/10.1016/j.jalgebra.2008.06.028 CR - Barati, Z., Khashyarmanesh, K., Mohammadi, F., Nafar, Kh., On the associated graphs to a commutative ring, J. Algebra Appl., 11(2) (2012), 1250037 (17 pages). https://doi.org/10.1142/S0219498811005610 CR - Beck, I., Coloring of commutative rings, J. Algebra, 116 (1988), 208-226. https://doi.org/10.1016/0021-8693(88)90202-5 CR - Bondy, J. A., Murty, U. S. R., Graph Theory, Graduate Texts in Mathematics, 244, Springer, New York, 2008. CR - Atani, S. E., The ideal theory in quotients of commutative semirings, Glas. Math., 42 (2007), 301–308. https://doi.org/10.3336/gm.42.2.05 CR - Atani, S. E., Hesari, S.D.P., Khoramdel, M., Strong co-ideal theory in quotients of semirings, J. of Advanced Research in Pure Math., 5(3) (2013), 19–32. https://doi.org/10.5373/jarpm.1482.061212 CR - Atani, S. E., Hesari, S.D.P., Khoramdel, M., The identity-summand graph of commutative semirings, J. Korean Math. Soc., 51 (2014), 189–202. https://doi.org/10.4134/JKMS.2014.51.1.189 CR - Atani, S. E., Hesari, S.D.P., Khoramdel, M., Total graph of a commutative semiring with respect to identity-summand elements, J. Korean Math. Soc., 51(3) (2014), 593– 607. https://doi.org/10.4134/JKMS.2014.51.3.593 CR - Atani, S. E., Hesari, S.D.P., Khoramdel, M., Total identity-summand graph of a commutative semiring with respect to a co-ideal, J. Korean Math. Soc., 52(1) (2015), 159-176. https://doi.org/10.4134/JKMS.2015.52.1.159 CR - Atani, S. E., Hesari, S.D.P., Khoramdel, M., A co-ideal based identity-summand graph of a commutative semiring, Comment. Math. Univ. Carolin., 56(3) (2015), 269–285. https://doi.org/10.14712/1213-7243.2015.124 CR - Atani, S. E., Hesari, S.D.P., Khoramdel, M., A graph associated to proper nonsmall ideals of a commutative ring, Comment. Math. Univ. Carolin., 58(1) (2017), 1-12. https://doi.org/10.14712/1213-7243.2015.189 CR - Atani, S. E., Hesari, S.D.P., Khoramdel, M., Sedghi Shanbeh Bazari, M., Total graph of a 0-distributive lattice, Categories and General Algebraic Structures with Applications, 9(1) (2018), 15-27. https://doi.org/10.29252/cgasa.9.1.15 CR - Atani, S. E., Hesari, S.D.P., Khoramdel, M., Sedghi Shanbeh Bazari, M., A semi-prime filter based identity-summand graph of a lattice, LE Matematich, Vol. LXXIII (2018), 297–318. https://doi.org/10.4418/2018.73.2.5 CR - Atani, S. E., Hesari, S.D.P., Khoramdel, M., Sarvandi, Z. E., Intersection graphs of co-ideals of semirings, Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 68(1) (2019), 840–851. https://doi.org/10.31801/cfsuasmas.481603 CR - Atani, S. E., Hesari, S.D.P., Khoramdel, M., On a graph of ideals of a commutative ring, Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 68(2) (2019), 2283-2297. https://doi.org/10.31801/cfsuasmas.534944 CR - Atani S. E., Esmaeili Khalil Saraei, F., The total graph of a commutative semiring, An. Stiint. Univ. Ovidius Constanta Ser. Mat., 21(2) (2013), 21-33. https://doi.org/10.2478/auom-2013-0021 CR - Golan, J. S., Semirings and Their Applications, Kluwer Academic Publisher Dordrecht, 1999. https://doi.org/10.1007/978-94-015-9333-5 UR - https://doi.org/10.31801/cfsuasmas.783398 L1 - https://dergipark.org.tr/en/download/article-file/1250622 ER -